Insights into RNA processing pathways and associated-RNA degrading enzymes in Archaea

Insights into RNA processing pathways and associated-RNA degrading enzymes in Archaea Abstract RNA processing pathways are at the center of regulation of gene expression. All RNA transcripts undergo multiple maturation steps in addition to covalent chemical modifications to become functional in the cell. This includes destroying unnecessary or defective cellular RNAs. In Archaea, information on mechanisms by which RNA species reach their mature forms and associated RNA-modifying enzymes is still fragmentary. To date, most archaeal actors and pathways have been proposed in light of information gathered from Bacteria and Eukarya. In this context, this review provides a state of the art overview of archaeal endoribonucleases and exoribonucleases that cleave and trim RNA species and also of the key small archaeal proteins that bind RNAs. Furthermore, synthetic up-to-date views of processing and biogenesis pathways of archaeal transfer and ribosomal RNAs as well as of maturation of stable small non-coding RNAs such as CRISPR RNAs, small C/D and H/ACA box guide RNAs, and other emerging classes of small RNAs are described. Finally prospective post-transcriptional mechanisms to control archaeal messenger RNA quality and quantity are discussed. Archaea, Ribonucleases, RNA processing, RNA decay, RNA-binding proteins, CRISPR-Cas © FEMS 2018. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png FEMS Microbiology Reviews Oxford University Press

Insights into RNA processing pathways and associated-RNA degrading enzymes in Archaea

Loading next page...
 
/lp/ou_press/insights-into-rna-processing-pathways-and-associated-rna-degrading-qoSyYXrlWE
Publisher
Blackwell
Copyright
© FEMS 2018. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com
ISSN
0168-6445
eISSN
1574-6976
D.O.I.
10.1093/femsre/fuy016
Publisher site
See Article on Publisher Site

Abstract

Abstract RNA processing pathways are at the center of regulation of gene expression. All RNA transcripts undergo multiple maturation steps in addition to covalent chemical modifications to become functional in the cell. This includes destroying unnecessary or defective cellular RNAs. In Archaea, information on mechanisms by which RNA species reach their mature forms and associated RNA-modifying enzymes is still fragmentary. To date, most archaeal actors and pathways have been proposed in light of information gathered from Bacteria and Eukarya. In this context, this review provides a state of the art overview of archaeal endoribonucleases and exoribonucleases that cleave and trim RNA species and also of the key small archaeal proteins that bind RNAs. Furthermore, synthetic up-to-date views of processing and biogenesis pathways of archaeal transfer and ribosomal RNAs as well as of maturation of stable small non-coding RNAs such as CRISPR RNAs, small C/D and H/ACA box guide RNAs, and other emerging classes of small RNAs are described. Finally prospective post-transcriptional mechanisms to control archaeal messenger RNA quality and quantity are discussed. Archaea, Ribonucleases, RNA processing, RNA decay, RNA-binding proteins, CRISPR-Cas © FEMS 2018. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

Journal

FEMS Microbiology ReviewsOxford University Press

Published: Apr 19, 2018

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off