Access the full text.
Sign up today, get DeepDyve free for 14 days.
Abstract Avoidance of structural alerts (SA) might reduce the risk of failure in drug discovery. However, there are still some marketed drugs containing SA, which indicates that SA should be analyzed carefully to avoid their excessive uses. Several detection systems, including automatic mining methods and expert systems, have been developed to identify SA. These methods only focus on toxic compounds that support the SA without consideration of non-toxic ones. Here, we proposed a frequency-based substructure detection protocol that learns from the non-toxic compounds containing SA to get non-toxic substructures (NTS), whose appearance will reduce the probability of a compound becoming toxic. Kazius and Hansen’s Ames mutagenicity data set was used as an example to demonstrate the protocol. SARpy and ToxAlerts were first employed to obtain the potential SA. Then two kinds of NTS were exploited: reverse effect substructures (RES) and conjugate effect substructures (CES). Contribution and prediction performance of the substructures were evaluated via neural network and rule-based methods. We also compared substructure-based methods with the conventional machine learning-based methods. The results demonstrated that most substructures contributed as supposed and substructure-based methods performed better in the resistance of overfitting. This work indicated that the protocol could effectively reduce the false positive rate in prediction of chemical mutagenicity, and possibly extend to other endpoints. structural alerts, Ames mutagenicity, computational toxicology, reverse effect substructures, conjugate effect substructures © The Author(s) 2018. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For permissions, please email: journals.permissions@oup.com This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/about_us/legal/notices)
Toxicological Sciences – Oxford University Press
Published: Jun 8, 2018
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.