Gravitational Wave Signals from the First Massive Black Hole Seeds

Gravitational Wave Signals from the First Massive Black Hole Seeds Abstract Recent numerical simulations reveal that the isothermal collapse of pristine gas in atomic cooling haloes may result in stellar binaries of supermassive stars with M* ≳ 104M⊙. For the first time, we compute the in-situ merger rate for such massive black hole remnants by combining their abundance and multiplicity estimates. For black holes with initial masses in the range 104 − 6M⊙ merging at redshifts z ≳ 15 our optimistic model predicts that LISA should be able to detect 0.6 mergers per year. This rate of detection can be attributed, without confusion, to the in-situ mergers of seeds from the collapse of very massive stars. Equally, in the case where LISA observes no mergers from heavy seeds at z ≳ 15 we can constrain the combined number density, multiplicity, and coalesence times of these high-redshift systems. This letter proposes gravitational wave signatures as a means to constrain theoretical models and processes that govern the abundance of massive black hole seeds in the early Universe. quasars: general, supermassive black holes, cosmology: darkages, reionization, firststars, galaxies: high-redshift, gravitational waves © 2018 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/about_us/legal/notices) http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Monthly Notices of the Royal Astronomical Society: Letters Oxford University Press

Gravitational Wave Signals from the First Massive Black Hole Seeds

Loading next page...
 
/lp/ou_press/gravitational-wave-signals-from-the-first-massive-black-hole-seeds-3oWDSYtplj
Publisher
journal_eissn:11745-3933
Copyright
© 2018 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society
ISSN
1745-3925
eISSN
1745-3933
D.O.I.
10.1093/mnrasl/sly091
Publisher site
See Article on Publisher Site

Abstract

Abstract Recent numerical simulations reveal that the isothermal collapse of pristine gas in atomic cooling haloes may result in stellar binaries of supermassive stars with M* ≳ 104M⊙. For the first time, we compute the in-situ merger rate for such massive black hole remnants by combining their abundance and multiplicity estimates. For black holes with initial masses in the range 104 − 6M⊙ merging at redshifts z ≳ 15 our optimistic model predicts that LISA should be able to detect 0.6 mergers per year. This rate of detection can be attributed, without confusion, to the in-situ mergers of seeds from the collapse of very massive stars. Equally, in the case where LISA observes no mergers from heavy seeds at z ≳ 15 we can constrain the combined number density, multiplicity, and coalesence times of these high-redshift systems. This letter proposes gravitational wave signatures as a means to constrain theoretical models and processes that govern the abundance of massive black hole seeds in the early Universe. quasars: general, supermassive black holes, cosmology: darkages, reionization, firststars, galaxies: high-redshift, gravitational waves © 2018 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/about_us/legal/notices)

Journal

Monthly Notices of the Royal Astronomical Society: LettersOxford University Press

Published: May 24, 2018

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off