Genome-wide mapping of gene-phenotype relationships in experimentally evolved populations

Genome-wide mapping of gene-phenotype relationships in experimentally evolved populations Abstract Model organisms subjected to sustained experimental evolution often show levels of phenotypic differentiation that dramatically exceed the phenotypic differences observed in natural populations. Genome-wide sequencing of pooled populations then offers the opportunity to make inferences about the genes that are the cause of these phenotypic differences. We tested, through computer simulations, the efficacy of a statistical learning technique called the “fused lasso additive model” (FLAM). We focused on the ability of FLAM to distinguish between genes which are differentiated and directly affect a phenotype from differentiated genes which have no effect on the phenotype. FLAM can separate these two classes of genes even with relatively small samples (10 populations, in total). The efficacy of FLAM is improved with increased number of populations, reduced environmental phenotypic variation, and increased within-treatment among-replicate variation. FLAM was applied to SNP variation measured in both twenty-population and thirty-population studies of Drosophila subjected to selection for age-at-reproduction, to illustrate the application of the method. © The Author(s) 2018. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/about_us/legal/notices) http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Molecular Biology and Evolution Oxford University Press

Genome-wide mapping of gene-phenotype relationships in experimentally evolved populations

Loading next page...
 
/lp/ou_press/genome-wide-mapping-of-gene-phenotype-relationships-in-experimentally-kczsj79BZs
Publisher
Oxford University Press
Copyright
© The Author(s) 2018. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com
ISSN
0737-4038
eISSN
1537-1719
D.O.I.
10.1093/molbev/msy113
Publisher site
See Article on Publisher Site

Abstract

Abstract Model organisms subjected to sustained experimental evolution often show levels of phenotypic differentiation that dramatically exceed the phenotypic differences observed in natural populations. Genome-wide sequencing of pooled populations then offers the opportunity to make inferences about the genes that are the cause of these phenotypic differences. We tested, through computer simulations, the efficacy of a statistical learning technique called the “fused lasso additive model” (FLAM). We focused on the ability of FLAM to distinguish between genes which are differentiated and directly affect a phenotype from differentiated genes which have no effect on the phenotype. FLAM can separate these two classes of genes even with relatively small samples (10 populations, in total). The efficacy of FLAM is improved with increased number of populations, reduced environmental phenotypic variation, and increased within-treatment among-replicate variation. FLAM was applied to SNP variation measured in both twenty-population and thirty-population studies of Drosophila subjected to selection for age-at-reproduction, to illustrate the application of the method. © The Author(s) 2018. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/about_us/legal/notices)

Journal

Molecular Biology and EvolutionOxford University Press

Published: May 31, 2018

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off