Fitness Trade-Offs Lead to Suppressor Tolerance in Yeast

Fitness Trade-Offs Lead to Suppressor Tolerance in Yeast Genetic variation among individuals within a population provides the raw material for phenotypic diversity upon which natural selection operates. Some given variants can act on multiple standing genomic variations simultaneously and release previously inaccessible phenotypes, leading to increased adaptive potential upon challenging environments. Previously, we identified such a variant related to a tRNA nonsense suppressor in yeast. When introduced into other genetic backgrounds, the suppressor led to an increased population phenotypic variance on various culture conditions, conferring background and environment specific selective advantages. Nonetheless, most isolates are intolerant to the suppressor on rich media due to a severe fitness cost. Here, we found that the tolerance to suppressor is related to a surprising level of fitness outburst, showing a trade-off effect to accommodate the cost of carrying the suppressor. To dissect the genetic basis of such trade-offs, we crossed strains with contrasting tolerance levels on rich media, and analyzed the fitness distribution patterns in the offspring. Combining quantitative tetrad analysis and bulk segregant analysis, we identified two genes, namely MKT1 and RGA1, involved in suppressor tolerance. We showed that alleles from the tolerant parent for both genes conferred a significant gain of fitness, which increased the suppressor tolerance. Our results present a detailed dissection of suppressor tolerance in yeast and provide insights into the molecular basis of trade-offs between fitness and evolutionary potential. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Molecular Biology and Evolution Oxford University Press

Fitness Trade-Offs Lead to Suppressor Tolerance in Yeast

Loading next page...
 
/lp/ou_press/fitness-trade-offs-lead-to-suppressor-tolerance-in-yeast-js54EIZTcy
Publisher
Oxford University Press
Copyright
© The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com
ISSN
0737-4038
eISSN
1537-1719
D.O.I.
10.1093/molbev/msw225
Publisher site
See Article on Publisher Site

Abstract

Genetic variation among individuals within a population provides the raw material for phenotypic diversity upon which natural selection operates. Some given variants can act on multiple standing genomic variations simultaneously and release previously inaccessible phenotypes, leading to increased adaptive potential upon challenging environments. Previously, we identified such a variant related to a tRNA nonsense suppressor in yeast. When introduced into other genetic backgrounds, the suppressor led to an increased population phenotypic variance on various culture conditions, conferring background and environment specific selective advantages. Nonetheless, most isolates are intolerant to the suppressor on rich media due to a severe fitness cost. Here, we found that the tolerance to suppressor is related to a surprising level of fitness outburst, showing a trade-off effect to accommodate the cost of carrying the suppressor. To dissect the genetic basis of such trade-offs, we crossed strains with contrasting tolerance levels on rich media, and analyzed the fitness distribution patterns in the offspring. Combining quantitative tetrad analysis and bulk segregant analysis, we identified two genes, namely MKT1 and RGA1, involved in suppressor tolerance. We showed that alleles from the tolerant parent for both genes conferred a significant gain of fitness, which increased the suppressor tolerance. Our results present a detailed dissection of suppressor tolerance in yeast and provide insights into the molecular basis of trade-offs between fitness and evolutionary potential.

Journal

Molecular Biology and EvolutionOxford University Press

Published: Jan 1, 2017

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off