Faunal Study of the Nocturnal Aculeate Wasps (Hymenoptera) of the Sonoran and Mojave Deserts of Joshua Tree National Park

Faunal Study of the Nocturnal Aculeate Wasps (Hymenoptera) of the Sonoran and Mojave Deserts of... Abstract Nocturnal aculeate wasps (Hymenoptera: Chyphotidae, Brachycistidinae [Tiphiidae], and Mutillidae) are abundant in North America’s deserts, yet their patterns of diversity are not well studied. Here we report on the diversity of these groups in Joshua Tree National Park (JTNP). On the basis of collection data from a transect of 14 sampling sites transitioning from the Mojave to the Sonoran Desert, our study shows that there are at least 11 species of Chyphotes (Chyphotidae), based on the collection of 1,513 specimens, there are at least 22 species of brachycistidine Tiphiidae species in five genera, based on the collection of 13,960 specimens, and at least 35 species of nocturnal mutillids in six genera, based on 8,477 specimens. Brachycistidine Tiphiidae populations peak earlier in the season compared with the other two groups. Also we found an increase in Chyphotidae, Brachycistidinae, and Mutillidae diversity and abundance with decreasing latitude. Several species appear to be spatially restricted to one desert region; others exhibit temporal isolation, only being collected during specific months. Our study suggests that JTNP houses a diverse community of nocturnal aculeate wasps with the Sonoran Desert being more diverse than the Mojave Desert. National Parks and other protected areas can play an important role in the maintenance of biodiversity (Bruner et al. 2001). In North America, much of the conservation efforts in national parks have focused on vertebrates (Clevenger and Waltho 2000, Mortiz et al. 2008) or on rare plants (Miller and White 1986, Frank and McNaughton 1992). Despite the conservation focus of National Parks in the United States, little has been published about the diverse insect communities housed in these protected areas. Joshua Tree National Park (JTNP) is unique in that it contains portions of two distinct desert ecoregions. This park gained U.S. National Park status in 1994 and is large covering ~3,200 ha in southeastern California (National Parks Service). The northern regions of JTNP are part of the Mojave Desert and the southern regions are part of the Sonoran Desert. These two deserts that exist within JTNP, and the transition zone connecting them, provide a unique opportunity to study patterns of insect biodiversity in a potentially diverse ecotone. Nocturnal aculeate wasps (Hymenoptera: Chyphotidae, Brachycistidinae [Tiphiidae], and Mutillidae) are ubiquitous in North America’s deserts, and, although it is expected that they would play an important role in the ecology of these areas, their patterns of diversity, however, are not well studied. Chyphotes Blake (Hymenoptera: Chyphotidae) is a genus of wasp that includes many species endemic to the deserts of North America, though some species can be found as far south as Mexico. Chyphotes females, as well as the related genera in Typhoctinae, presumably parasitize the larval or pupal stages of Coleoptera, based on phylogenetic relationships, but Brothers and Finnamore (1993) suggested camel spiders (Arachnida: Solifugae) based on a single record. This is the only sparse natural history information that exists for this group. Although the genus has been revised twice previously by Buzicky (1941) and Mickel (1967), the taxonomy remains unsettled, making species identification challenging. In the southwestern deserts of the United States, nocturnal wasps in the family Tiphiidae (Hymenoptera: Tiphiidae: Brachycistidinae) likely play an important ecological role as parasitoids based on their high abundance. However, little has been published on this group besides taxonomy. Many Brachycistidinae are endemic to specific arid regions of North America (Kimsey and Wasbauer 2006), though the subfamily can be found as far south as Costa Rica. Little is known about the natural history of this group, but it is thought that Brachycistidinae females parasitize the larval or pupal stages of Coleoptera, based on a single recent record (Borowiec and Kimsey 2015). Mutillidae (Hymenoptera), also known as velvet ants, is a family of wasp that also has species, both diurnal and nocturnal, endemic to the deserts of North America. However, the nocturnal velvet ant fauna of JTNP is poorly known. Velvet ant females parasitize the larval or pupal stages of holometabolous insects, such as Diptera, Coleoptera, and Hymenoptera, with most known hosts being aculeate Hymenoptera (Brothers et al. 2000). As with Chyphotes, only sparse natural history information exists for most species of velvet ants. For all three of these groups, the females presumably spend most of their time underground searching for hosts, and, therefore, are encountered less frequently than males. Males of these groups, however, are easily collected as they are attracted to light traps. The objectives of this study are to determine species diversity of nocturnal aculeate wasps at JTNP, to determine faunal differences between the different deserts of the park, and to determine relative species abundances in the distinct desert regions. Specimens were collected in a transect spanning both deserts and the transition zone. Understanding patterns of diversity in diverse, desert-adapted insects can inform future conservation efforts and will lead to a better understanding of biodiversity in JTNP. Materials and Methods JTNP includes the Mojave Desert, Sonoran Desert, and transition zone between the two. These areas can be identified based on their characteristic vegetation. JTNP is named after the Joshua tree (Yucca brevifolia), which is endemic to the Mojave Desert and is restricted to the northern portion of the park. This area also houses piñon pine (Pinus monophylla), California juniper (Juniperus californica), desert scrub oak (Quercus turbinella), Tucker’s oak (Quercus john-tuckeri), and Muller oak (Quercus cornelius-mulleri) (Ricketts et al. 1999). The southern part of the park, below 910 m, in the Sonoran Desert has flora that includes creosote bush (Larrea tridentata), scrub ocotillo (Fouquieria splendens), desert saltbush (Atriplex spp.), Yucca and cholla cactus (Cylindropuntia bigelovii) (Ricketts et al. 1999). Within JTNP, Pinto Basin Road served as the perfect transect between the Mojave and Sonoran deserts. Beginning at the park boundary at the North Entrance and continuing along Pinto Basin Road to the Cottonwood Visitor Center, light traps were deployed approximately every 5 km (Table 1). Trapping along Pinto Basin Road provided a 43-km transect with a 727 m change in elevation. This allowed five light traps to be placed in the Mojave Desert; the sites of these traps are designated N9, N7, N5, N3, and N1, where N stands for north of the transition zone and the number represents the distance from the transition zone in miles. This also allowed for one trap in the transition zone (T) and eight traps south of the transition zone in the Sonoran Desert (S1, S3, S5, S7, S9, S11, S13, and S18). Once again, where S stands for south of the transition zone and the number represents the distance from the transition zone in miles (Fig. 1). Table 1. Joshua Tree National Park Transect Site Information Site name  Site location  Distance from road edge (m)  Elevation (m)  Dominant vegetation type  N9  N34.00482 W116.04924  66  1,268  Joshua Tree  N7  N34.02017 W116.01778  88  1,111  Yucca & Joshua Trees  N5  N33.99412 W116.02134  90  1,193  Yucca and Joshua Trees  N3  N33.97477 W115.99798  60  1,050  Yucca and Creosote  N1  N33.95148 W115.98084  76  900  Creosote and Cheesebush  T  N33.94111 W115.96973  59  842  Creosote, Mesquite, and Smoke tree  S1  N33.93315 W115.95633  56  774  Smoke tree  S3  N33.92409 W115.92458  32  631  Jumping Cholla  S5  N33.92305 W115.89362  56  559  Small Creosote  S7  N33.91169 W115.86460  71  541  Small Creosote and Cheesebush  S9  N33.90141 W115.83225  64  544  Small Creosote  S11  N33.87896 W115.81215  77  608  Creosote and Mormon tea  S13  N33.85631 W115.79056  55  680  Creosote  S18  N33.80103 W115.78088  62  851  Creosote  Site name  Site location  Distance from road edge (m)  Elevation (m)  Dominant vegetation type  N9  N34.00482 W116.04924  66  1,268  Joshua Tree  N7  N34.02017 W116.01778  88  1,111  Yucca & Joshua Trees  N5  N33.99412 W116.02134  90  1,193  Yucca and Joshua Trees  N3  N33.97477 W115.99798  60  1,050  Yucca and Creosote  N1  N33.95148 W115.98084  76  900  Creosote and Cheesebush  T  N33.94111 W115.96973  59  842  Creosote, Mesquite, and Smoke tree  S1  N33.93315 W115.95633  56  774  Smoke tree  S3  N33.92409 W115.92458  32  631  Jumping Cholla  S5  N33.92305 W115.89362  56  559  Small Creosote  S7  N33.91169 W115.86460  71  541  Small Creosote and Cheesebush  S9  N33.90141 W115.83225  64  544  Small Creosote  S11  N33.87896 W115.81215  77  608  Creosote and Mormon tea  S13  N33.85631 W115.79056  55  680  Creosote  S18  N33.80103 W115.78088  62  851  Creosote  Site names indicate location in reference to the transition zone between the Mojave and Sonoran deserts and distance in miles from the transition zone. Site names labeled as N indicate it was located north of the transition zone (Mojave Desert), T indicates it is directly in the transition zone, and S indicates it was south of the transition zone (Sonoran Desert). View Large Fig. 1. View largeDownload slide Joshua Tree National Park map (gray) with park boundary. Location of the Sonoran Desert, transition zone, and Mojave Desert are labeled. Transect collection sites are indicated on the map by circles and are labeled with site names corresponding to Table 1. Fig. 1. View largeDownload slide Joshua Tree National Park map (gray) with park boundary. Location of the Sonoran Desert, transition zone, and Mojave Desert are labeled. Transect collection sites are indicated on the map by circles and are labeled with site names corresponding to Table 1. Specimens were collected from each site using light traps. The light traps consisted of a fluorescent battery-powered camping lantern and small, clear bowls filled with slightly soapy water. Lights were turned on at dusk and off at dawn. Sites were sampled four times, once each month from July to October 2012 (18–21 July, 26–28 August, 22–24 September, and 26–28 October). During each sampling event, traps were deployed each evening for a total of two to three nights. Sampling was restricted to July to October due to permitting. All collected specimens were stored in 95% ethanol initially, and pinned, labeled, and identified at the Entomological Collection at Utah State University (EMUS). GPS locations were determined for each collection site (Table 1). The species of Chyphotes were identified using Buzicky (1941) and Mickel (1967), as well as through the study of type material. The brachycistidine genera of Tiphiidae were identified using Kimsey and Wasbauer (2006) and the reference collection at EMUS identified by Wasbauer. The species of Acanthetropis Wasbauer, Brachycistis Fox, Colocistis Krombein, and Stilbopogon Mickel and Krombein were identified using Wasbauer (1966) and Kimsey and Wasbauer (1998, 2013, 2015). The mutillid genera were identified based on Schuster (1958) and the reference collection housed at EMUS. The Sørensen’s similarity index (Sørensen, 1948), which is based on presences/absences, was used to determine the similarity between two sites. A pair-wise comparison of all sites using the Sørensen’s similarity index can be found in Table 5. The Bray–Curtis dissimilarity index (Bray and Curtis 1957), which is additionally based on abundances, was used to determine dissimilarity between two sites. A pair-wise comparison of all sites using the Bray–Curtis dissimilarity index can be found in Table 6. Results and Discussion Chyphotes (Chyphotidae) Our trapping efforts resulted in the collection of 1,513 male specimens representing 11 species (Table 2). Chyphotes aenigmus Mickel (n = 460), Chyphotes melaniceps (Blake) (n = 320), and Chyphotes atriceps Mickel (n = 301) are the most abundant of all the species found at the park. The rarest species, those with less than 10 individuals found throughout the course of the study, include only Chyphotes boharti Mickel (one specimen) and C. sp. nov. (five specimens), which will be described in a different publication. Table 2. Number of individuals of each Chyphotes species collected at each site from north to south Species  Collecting site  N9  N7  N5  N3  N1  T  S1  S3  S5  S7  S9  S11  S13  S18  Total no. per spp.  Chyphotes aenigmus  3  1  1  7  19  25  36  93  47  28  31  27  67  75  460  Chyphotes atriceps  13  43  17  42  15  2  17  5  4  16  15  24  19  69  301  Chyphotes boharti  –  –  –  –  –  –  –  –  1  –  –  –  –  –  1  Chyphotes calexicensis  –  –  –  –  –  –  –  –  7  14  14  6  3  2  46  Chyphotes californicus  2  2  1  –  37  48  31  2  1  –  –  3  2  10  139  Chyphotes incredulus  –  –  –  –  –  –  –  –  18  31  22  13  3  –  87  Chyphotes melaniceps  –  –  1  1  21  11  59  62  5  7  11  16  41  85  320  Chyphotes attenuatus  4  –  5  10  2  –  –  –  1  –  –  –  7  23  52  Chyphotes minisculus  –  –  –  –  7  16  –  –  2  1  1  2  5  1  35  Chyphotes pallidus  –  –  –  –  –  –  –  3  21  33  5  4  –  1  67  Chyphotes sp. nov.  –  –  –  –  –  –  –  –  –  1  1  2  –  1  5  Total no. per site  22  46  25  60  101  102  143  165  107  131  100  97  147  267  = 1,513  Species  Collecting site  N9  N7  N5  N3  N1  T  S1  S3  S5  S7  S9  S11  S13  S18  Total no. per spp.  Chyphotes aenigmus  3  1  1  7  19  25  36  93  47  28  31  27  67  75  460  Chyphotes atriceps  13  43  17  42  15  2  17  5  4  16  15  24  19  69  301  Chyphotes boharti  –  –  –  –  –  –  –  –  1  –  –  –  –  –  1  Chyphotes calexicensis  –  –  –  –  –  –  –  –  7  14  14  6  3  2  46  Chyphotes californicus  2  2  1  –  37  48  31  2  1  –  –  3  2  10  139  Chyphotes incredulus  –  –  –  –  –  –  –  –  18  31  22  13  3  –  87  Chyphotes melaniceps  –  –  1  1  21  11  59  62  5  7  11  16  41  85  320  Chyphotes attenuatus  4  –  5  10  2  –  –  –  1  –  –  –  7  23  52  Chyphotes minisculus  –  –  –  –  7  16  –  –  2  1  1  2  5  1  35  Chyphotes pallidus  –  –  –  –  –  –  –  3  21  33  5  4  –  1  67  Chyphotes sp. nov.  –  –  –  –  –  –  –  –  –  1  1  2  –  1  5  Total no. per site  22  46  25  60  101  102  143  165  107  131  100  97  147  267  = 1,513  Sites beginning with ‘N’ were Mojave Desert sites, those beginning with ‘S’ were Sonoran Desert sites, and ‘T’ indicates a site in the transition zone. View Large Tiphiidae (Brachycistidinae) Our trapping efforts resulted in the collection of 13,960 male specimens representing 22 species (Table 3). The most abundant species collected at JTNP were Colocistis castanea (Cresson) (n = 2,842), Colocistis brevis (Fox) (n = 2,241), and Acanthetropis noctivaga (n = 1,237). The rarest species was Brachycistis elegantula Cockerell and Casad (two specimens) (Table 3). Table 3. Number of individuals of each Brachycistidinae species collected at each site from north to south Species  Collecting site  N9  N7  N5  N3  N1  T  S1  S3  S5  S7  S9  S11  S13  S18  Total no. per spp.  Acanthetropis noctivaga  1  3  4  26  4  7  31  44  90  119  160  110  314  324  1,237  Brachycistis agama  –  –  –  –  –  –  –  –  4  31  5  17  14  –  71  Brachycistis curvata  19  21  254  23  1  1  –  17  34  33  29  18  7  4  461  Brachycistis elegantula  –  –  –  –  –  –  –  –  –  –  1  –  1  –  2  Brachycistis imitans  1  1  4  –  –  –  –  –  –  1  1  1  11  4  24  Brachycistis inaequalis  9  13  1  1  1  –  –  –  45  296  66  3  2  –  437  Brachycistis linsleyi  26  30  50  35  4  5  9  19  52  101  144  255  235  23  988  Brachycistis petiolata  –  –  –  –  –  –  –  –  17  30  36  4  –  –  87  Brachycistis timberlakei  1  40  114  74  –  1  1  20  85  194  206  189  137  40  1,102  Brachycistis triangularis  7  –  4  3  18  56  61  33  182  120  111  84  77  86  842  Brachycistis vigilax  1  4  27  73  –  1  1  6  69  111  156  18  10  9  486  Brachycistina acuta  44  47  21  39  19  11  7  44  125  262  71  135  135  24  984  Colocistis brevis  1  8  4  7  64  89  245  314  418  537  219  180  45  110  2,241  Colocistis castanea  45  63  30  61  106  175  264  54  73  67  52  138  137  1577  2,842  Colocistis crassa  62  16  21  13  3  1  3  2  –  1  9  85  72  34  322  Colocistis eremi  –  1  –  1  14  2  31  132  89  99  48  271  85  113  886  Colocistis themarum  5  8  7  9  45  103  84  18  8  5  5  9  4  2  312  Stilbopogon inermis  –  –  –  –  29  43  29  4  17  9  46  11  2  2  192  Stilbopogon marcida  –  –  –  –  5  9  9  1  68  52  75  28  21  7  275  Stilbopogon megalops  –  1  –  –  13  49  20  –  4  2  8  1  1  –  99  Stilbopogon paupercula  –  –  –  –  1  –  5  –  6  1  4  –  –  –  17  Stilbopogon perpunctata  –  –  –  –  1  4  1  1  8  24  9  4  –  1  53  Total no. per site  222  256  541  365  328  557  801  709  1394  2095  1461  1561  1310  2360  = 13,960  Species  Collecting site  N9  N7  N5  N3  N1  T  S1  S3  S5  S7  S9  S11  S13  S18  Total no. per spp.  Acanthetropis noctivaga  1  3  4  26  4  7  31  44  90  119  160  110  314  324  1,237  Brachycistis agama  –  –  –  –  –  –  –  –  4  31  5  17  14  –  71  Brachycistis curvata  19  21  254  23  1  1  –  17  34  33  29  18  7  4  461  Brachycistis elegantula  –  –  –  –  –  –  –  –  –  –  1  –  1  –  2  Brachycistis imitans  1  1  4  –  –  –  –  –  –  1  1  1  11  4  24  Brachycistis inaequalis  9  13  1  1  1  –  –  –  45  296  66  3  2  –  437  Brachycistis linsleyi  26  30  50  35  4  5  9  19  52  101  144  255  235  23  988  Brachycistis petiolata  –  –  –  –  –  –  –  –  17  30  36  4  –  –  87  Brachycistis timberlakei  1  40  114  74  –  1  1  20  85  194  206  189  137  40  1,102  Brachycistis triangularis  7  –  4  3  18  56  61  33  182  120  111  84  77  86  842  Brachycistis vigilax  1  4  27  73  –  1  1  6  69  111  156  18  10  9  486  Brachycistina acuta  44  47  21  39  19  11  7  44  125  262  71  135  135  24  984  Colocistis brevis  1  8  4  7  64  89  245  314  418  537  219  180  45  110  2,241  Colocistis castanea  45  63  30  61  106  175  264  54  73  67  52  138  137  1577  2,842  Colocistis crassa  62  16  21  13  3  1  3  2  –  1  9  85  72  34  322  Colocistis eremi  –  1  –  1  14  2  31  132  89  99  48  271  85  113  886  Colocistis themarum  5  8  7  9  45  103  84  18  8  5  5  9  4  2  312  Stilbopogon inermis  –  –  –  –  29  43  29  4  17  9  46  11  2  2  192  Stilbopogon marcida  –  –  –  –  5  9  9  1  68  52  75  28  21  7  275  Stilbopogon megalops  –  1  –  –  13  49  20  –  4  2  8  1  1  –  99  Stilbopogon paupercula  –  –  –  –  1  –  5  –  6  1  4  –  –  –  17  Stilbopogon perpunctata  –  –  –  –  1  4  1  1  8  24  9  4  –  1  53  Total no. per site  222  256  541  365  328  557  801  709  1394  2095  1461  1561  1310  2360  = 13,960  Sites beginning with “N” were Mojave Desert sites, those beginning with “S” were Sonoran Desert sites, and “T” indicates a site in the transition zone. View Large Mutillidae Our trapping efforts resulted in 35 species in six genera totaling 8,477 male specimens (Table 4). Odontophotopsis microdonta Ferguson (n = 1,803), O. clypeata Schuster (n = 1,036), and Sphaeropthalma yumaella Schuster (n = 825) are the most abundant of all the species found at the park. The rarest species, those with less than 10 individuals found throughout the course of the study, include Odontophotopsis dalyi Sadler and Pitts (4 specimens), Odontophotopsis obscura (Cockerell) (3), Odontophotopsis odontoloxia Sadler and Pitts (1), Odontophotopsis parva Schuster (2), Odontophotopsis setifera Schuster (8), Photomorphus schoenwerthi Sadler and Pitts (1), Sphaeropthalma nana (Ashmead) (1), and Sphaeropthalma triangularis (Blake) (2) (Table 4). O. setifera Schuster and also S. nana were considered rare according to surveys of the Ash Meadows National Wildlife Refuge (Boehme et al. 2012). Table 4. Number of individuals of each Mutillidae species collected at each site from north to south Species  Collecting site  N9  N7  N5  N3  N1  T  S1  S3  S5  S7  S9  S11  S13  S18  Total no. per spp.  Acanthophotopsis falciformis  –  –  –  –  –  2  3  –  5  2  14  3  3  2  34  Acrophotopsis dirce  1  20  3  5  12  9  7  1  1  –  13  –  1  23  96  Dilophotopsis paron  49  11  41  4  7  5  1  2  –  1  –  6  5  134  266  Odontophotopsis armata  –  11  2  3  20  84  130  6  1  2  2  –  1  3  265  Odontophotopsis bellona  4  5  8  8  2  14  41  77  40  20  45  9  15  49  337  Odontophotopsis biramosa  –  –  –  –  –  –  –  2  4  5  3  6  10  1  31  Odontophotopsis clypeata  1  4  –  5  3  3  49  128  144  203  71  108  107  210  1,036  Odontophotopsis dalyi  –  2  –  –  –  –  –  –  –  2  –  –  –  –  4  Odontophotopsis delodonta  –  2  –  1  –  1  6  7  8  52  48  18  17  1  161  Odontophotopsis inconspicua  –  1  –  5  5  17  104  18  3  10  30  11  13  59  276  Odontophotopsis mamata  –  –  –  –  1  29  75  19  2  6  3  4  2  12  153  Odontophotopsis melicausa  10  15  –  9  –  2  4  –  –  1  –  9  13  23  86  Odontophotopsis microdonta  79  53  76  125  22  19  13  195  23  11  43  724  286  134  1,803  Odontophotopsis obscura  –  –  –  –  –  –  –  –  –  –  3  –  –  –  3  Odontophotopsis odontoloxia  –  –  –  –  –  –  –  –  1  –  –  –  –  –  1  Odontophotopsis parva  –  –  –  –  –  –  –  –  –  –  2  –  –  –  2  Odontophotopsis quadrispinosa  –  –  –  3  –  2  7  26  11  20  26  24  4  5  128  Odontophotopsis serca  3  6  1  8  51  256  375  19  5  2  10  17  6  17  776  Odontophotopsis setifera  –  –  –  –  –  –  –  –  –  –  –  –  –  8  8  Odontophotopsis sonora  –  –  –  –  –  –  1  1  1  5  4  –  –  –  12  Photomorphus schoenwerthi  –  –  –  –  –  –  –  –  –  –  –  –  –  1  1  Sphaeropthalma amphion  3  2  3  1  5  16  34  14  2  3  3  2  9  9  106  Sphaeropthalma angulifera  14  –  9  –  –  1  –  –  –  –  –  –  1  6  31  Sphaeropthalma arota  –  1  –  –  1  5  6  3  2  1  –  –  3  8  30  Sphaeropthalma becki  –  2  7  13  11  34  13  48  32  23  9  50  44  57  343  Sphaeropthalma blakeii  11  10  37  66  8  2  15  19  15  18  31  18  58  93  401  Sphaeropthalma difficilis  20  37  43  40  17  39  62  70  57  111  89  63  67  106  821  Sphaeropthalma fergusoni  1  1  –  2  1  52  70  7  1  5  2  3  5  9  159  Sphaeropthalma macswaini  –  –  –  –  3  32  10  –  –  –  –  –  –  –  45  Sphaeropthalma megagnathos  –  –  –  –  –  –  1  –  –  –  –  –  –  11  12  Sphaeropthalma mendica  –  1  1  3  2  4  16  2  –  –  5  –  7  154  195  Sphaeropthalma nana  –  1  –  –  –  –  –  –  –  –  –  –  –  –  1  Sphaeropthalma pallidipes  –  –  –  –  –  –  –  –  7  12  7  –  1  –  27  Sphaeropthalma triangularis  –  –  1  –  –  –  –  –  –  1  –  –  –  –  2  Sphaeropthalma yumaella  2  2  21  55  26  16  49  81  74  64  91  52  132  160  825  Total no. per site  198  187  253  356  197  644  1092  745  439  580  554  1127  810  1295  = 8,477  Species  Collecting site  N9  N7  N5  N3  N1  T  S1  S3  S5  S7  S9  S11  S13  S18  Total no. per spp.  Acanthophotopsis falciformis  –  –  –  –  –  2  3  –  5  2  14  3  3  2  34  Acrophotopsis dirce  1  20  3  5  12  9  7  1  1  –  13  –  1  23  96  Dilophotopsis paron  49  11  41  4  7  5  1  2  –  1  –  6  5  134  266  Odontophotopsis armata  –  11  2  3  20  84  130  6  1  2  2  –  1  3  265  Odontophotopsis bellona  4  5  8  8  2  14  41  77  40  20  45  9  15  49  337  Odontophotopsis biramosa  –  –  –  –  –  –  –  2  4  5  3  6  10  1  31  Odontophotopsis clypeata  1  4  –  5  3  3  49  128  144  203  71  108  107  210  1,036  Odontophotopsis dalyi  –  2  –  –  –  –  –  –  –  2  –  –  –  –  4  Odontophotopsis delodonta  –  2  –  1  –  1  6  7  8  52  48  18  17  1  161  Odontophotopsis inconspicua  –  1  –  5  5  17  104  18  3  10  30  11  13  59  276  Odontophotopsis mamata  –  –  –  –  1  29  75  19  2  6  3  4  2  12  153  Odontophotopsis melicausa  10  15  –  9  –  2  4  –  –  1  –  9  13  23  86  Odontophotopsis microdonta  79  53  76  125  22  19  13  195  23  11  43  724  286  134  1,803  Odontophotopsis obscura  –  –  –  –  –  –  –  –  –  –  3  –  –  –  3  Odontophotopsis odontoloxia  –  –  –  –  –  –  –  –  1  –  –  –  –  –  1  Odontophotopsis parva  –  –  –  –  –  –  –  –  –  –  2  –  –  –  2  Odontophotopsis quadrispinosa  –  –  –  3  –  2  7  26  11  20  26  24  4  5  128  Odontophotopsis serca  3  6  1  8  51  256  375  19  5  2  10  17  6  17  776  Odontophotopsis setifera  –  –  –  –  –  –  –  –  –  –  –  –  –  8  8  Odontophotopsis sonora  –  –  –  –  –  –  1  1  1  5  4  –  –  –  12  Photomorphus schoenwerthi  –  –  –  –  –  –  –  –  –  –  –  –  –  1  1  Sphaeropthalma amphion  3  2  3  1  5  16  34  14  2  3  3  2  9  9  106  Sphaeropthalma angulifera  14  –  9  –  –  1  –  –  –  –  –  –  1  6  31  Sphaeropthalma arota  –  1  –  –  1  5  6  3  2  1  –  –  3  8  30  Sphaeropthalma becki  –  2  7  13  11  34  13  48  32  23  9  50  44  57  343  Sphaeropthalma blakeii  11  10  37  66  8  2  15  19  15  18  31  18  58  93  401  Sphaeropthalma difficilis  20  37  43  40  17  39  62  70  57  111  89  63  67  106  821  Sphaeropthalma fergusoni  1  1  –  2  1  52  70  7  1  5  2  3  5  9  159  Sphaeropthalma macswaini  –  –  –  –  3  32  10  –  –  –  –  –  –  –  45  Sphaeropthalma megagnathos  –  –  –  –  –  –  1  –  –  –  –  –  –  11  12  Sphaeropthalma mendica  –  1  1  3  2  4  16  2  –  –  5  –  7  154  195  Sphaeropthalma nana  –  1  –  –  –  –  –  –  –  –  –  –  –  –  1  Sphaeropthalma pallidipes  –  –  –  –  –  –  –  –  7  12  7  –  1  –  27  Sphaeropthalma triangularis  –  –  1  –  –  –  –  –  –  1  –  –  –  –  2  Sphaeropthalma yumaella  2  2  21  55  26  16  49  81  74  64  91  52  132  160  825  Total no. per site  198  187  253  356  197  644  1092  745  439  580  554  1127  810  1295  = 8,477  Sites beginning with “N” were Mojave Desert sites, those beginning with “S” were Sonoran Desert sites, and “T” indicates a site in the transition zone. View Large Biogeographical and Ecological Trends There was a trend showing an increase in the abundance and diversity of all three groups with decreasing latitude (i.e., more specimens representing more species were collected at the south end of the park than the north end) with an average of 631 specimens per site caught in the Mojave Desert, 1,303 in the transition zone and 2,436 in the Sonoran Desert. Furthermore, the similarity of the sites decreased and the dissimilarity increased as sites are compared from north (Mojave Desert) to south (Sonoran Desert) (Tables 5 and 6), although some adjacent sites, such as S5, S7, and S11, were quite similar. For nocturnal aculeate wasps, the Sonoran Desert is more diverse than the Mojave Desert, which is the case for other flora and fauna (Phillips et al. 2015). Given the number of specimens collected and the parasitic nature of all three of these groups, aculeate nocturnal wasps must be ecologically significant in these deserts reducing the overall numbers of both potential pollinators, predatory hymenopterans, and phytophagous insects. Table 5. Sørensen’s similarity coefficient based on the combined presence/absence data for all three groups of nocturnal wasps (Hymenoptera: Chyphotidae, Brachycistidinae [Tiphiidae], and Mutillidae)   N9  N7  N5  N3  N1  T  S1  S3  S5  S7  S9  S11  S13  S18  N9                              N7  0.83                            N5  0.87  0.80                          N3  0.84  0.90  0.85                        N1  0.72  0.81  0.76  0.80                      T  0.75  0.86  0.76  0.85  0.87                    S1  0.68  0.82  0.69  0.81  0.86  0.92                  S3  0.71  0.83  0.75  0.84  0.84  0.88  0.89                S5  0.63  0.71  0.64  0.73  0.80  0.80  0.81  0.84              S7  0.63  0.73  0.63  0.74  0.77  0.81  0.82  0.83  0.91            S9  0.59  0.70  0.63  0.74  0.76  0.78  0.79  0.82  0.90  0.91          S11  0.69  0.75  0.65  0.77  0.77  0.83  0.80  0.83  0.88  0.93  0.88        S13  0.73  0.81  0.74  0.82  0.82  0.90  0.83  0.84  0.88  0.87  0.86  0.88      S18  0.72  0.77  0.73  0.81  0.81  0.89  0.86  0.89  0.83  0.84  0.81  0.86  0.89      N9  N7  N5  N3  N1  T  S1  S3  S5  S7  S9  S11  S13  S18  N9                              N7  0.83                            N5  0.87  0.80                          N3  0.84  0.90  0.85                        N1  0.72  0.81  0.76  0.80                      T  0.75  0.86  0.76  0.85  0.87                    S1  0.68  0.82  0.69  0.81  0.86  0.92                  S3  0.71  0.83  0.75  0.84  0.84  0.88  0.89                S5  0.63  0.71  0.64  0.73  0.80  0.80  0.81  0.84              S7  0.63  0.73  0.63  0.74  0.77  0.81  0.82  0.83  0.91            S9  0.59  0.70  0.63  0.74  0.76  0.78  0.79  0.82  0.90  0.91          S11  0.69  0.75  0.65  0.77  0.77  0.83  0.80  0.83  0.88  0.93  0.88        S13  0.73  0.81  0.74  0.82  0.82  0.90  0.83  0.84  0.88  0.87  0.86  0.88      S18  0.72  0.77  0.73  0.81  0.81  0.89  0.86  0.89  0.83  0.84  0.81  0.86  0.89    A value of 1 indicates the two localities share all of the same species, and a value of 0 indicates they do not share any of the same species. Indices at, or above, 0.90 are bolded. View Large Table 6. Bray–Curtis dissimilarity coefficient based on the combined data for all three groups of nocturnal wasps (Hymenoptera: Chyphotidae, Brachycistidinae [Tiphiidae], and Mutillidae)   N9  N7  N5  N3  N1  T  S1  S3  S5  S7  S9  S11  S13  S18  N9                              N7  0.35                            N5  0.49  0.50                          N3  0.49  0.34  0.41                        N1  0.67  0.59  0.73  0.64                      T  0.83  0.75  0.83  0.75  0.42                    S1  0.87  0.81  0.85  0.76  0.57  0.32                  S3  0.73  0.69  0.73  0.58  0.66  0.66  0.51                S5  0.80  0.72  0.71  0.61  0.71  0.71  0.59  0.37              S7  0.86  0.79  0.76  0.70  0.79  0.78  0.67  0.50  0.26            S9  0.79  0.71  0.67  0.59  0.71  0.71  0.60  0.47  0.31  0.30          S11  0.77  0.75  0.73  0.65  0.74  0.73  0.66  0.46  0.46  0.46  0.43        S13  0.73  0.71  0.67  0.57  0.72  0.71  0.66  0.45  0.47  0.51  0.43  0.28      S18  0.84  0.81  0.82  0.73  0.80  0.76  0.65  0.57  0.65  0.66  0.64  0.62  0.49      N9  N7  N5  N3  N1  T  S1  S3  S5  S7  S9  S11  S13  S18  N9                              N7  0.35                            N5  0.49  0.50                          N3  0.49  0.34  0.41                        N1  0.67  0.59  0.73  0.64                      T  0.83  0.75  0.83  0.75  0.42                    S1  0.87  0.81  0.85  0.76  0.57  0.32                  S3  0.73  0.69  0.73  0.58  0.66  0.66  0.51                S5  0.80  0.72  0.71  0.61  0.71  0.71  0.59  0.37              S7  0.86  0.79  0.76  0.70  0.79  0.78  0.67  0.50  0.26            S9  0.79  0.71  0.67  0.59  0.71  0.71  0.60  0.47  0.31  0.30          S11  0.77  0.75  0.73  0.65  0.74  0.73  0.66  0.46  0.46  0.46  0.43        S13  0.73  0.71  0.67  0.57  0.72  0.71  0.66  0.45  0.47  0.51  0.43  0.28      S18  0.84  0.81  0.82  0.73  0.80  0.76  0.65  0.57  0.65  0.66  0.64  0.62  0.49    Values close to 1 indicate the communities at these locations are completely different, and values close to 0 indicate they are more similar. View Large Interestingly, there were several species that appeared to be restricted to the Sonoran Desert portions of the park. For example, Chyphotes boharti, Chyphotes calexicensis Bradley, Chyphotes pallidus Buzicky, Chyphotes incredulus Mickel, and C. sp. nov. (Table 2), Brachycistis agama (Dalla Torre), B. elegantula, and B. petiolata Fox (Table 3), and Acanthophotopsis falciformis Schuster, Odontophotopsis biramosa Schuster, O. obscura, O. odontoloxia, O. parva, O. setifera, O. sonora (Schuster), Photomorphus schoenwerthi, Sphaeropthalma megagnathos Schuster, and Sphaeropthalma pallidipes Schuster (Table 4) were only collected from Sonoran Desert sites. Several other species were much more common in the Sonoran Desert, although limited individuals were also collected north of the transition zone. For example, all five of the Stilbopogon species were primarily collected in the Sonoran Desert, with only a few individuals collected more than 1.6 km north of the transition zone. C. aenigmus was collected from every site, but only 31 individuals were collected from the Mojave region, while 404 individuals were collected from the Sonoran. Some species of mutillids, such as Odontophotopsis clypeata, Odontophotopsis delodonta Viereck, and Odontophotopsis inconspicua (Blake) showed a similar trend. Other species seemed to be most abundant in the transition between Mojave and Sonoran regions. For example, Stilbopogon megalops Kimsey and Wasbauer and Colocistis themarum (Bradley), while collected from both deserts, were more abundant in the transition zone site and sites adjacent to it. Chyphotes californicus Baker, while collected from both deserts, was found in higher abundance in the transition zone or in the sites adjacent to it. Surprisingly, none of the species collected were restricted to the Mojave Desert portions of the park, though one, Brachycistis curvata Malloch, was more abundant in the Mojave sites than in the Sonoran sites. The diversity of wasps was not even across the collecting dates. Unsurprisingly, the number of individuals collected decreased as the season progressed. For example, 8,287 brachycistidines were collected in July, 2,563 in August, 2,727 in September, and 383 in October. Although the beginning of the flight season could not be determined due to permitting, overall there was a decrease in abundance as the summer progressed. This pattern, however, was not consistent across all species. Some species, such as Co. brevis and Co. castanea, were more commonly collected in July. Other species, such as B. agama and B. curvata, were more often collected in September or October, and C. pallidus and A. falciformis were more commonly collected in the later summer months (August and September) than in July. In addition, brachycistidine tiphiids peaked earlier in the season compared with that of the other two groups. This suggests that in addition to the observation that some species are spatially isolated, some species also appear to be temporally isolated. Acknowledgments We would like to thank K. Weglarz (Utah State University, Logan, Utah) for her help in collecting and processing specimens and data, K.A. Williams (California Department of Food and Agriculture, Sacramento, CA) and G. Waldren (Utah State University, Logan, Utah) for reading the manuscript of this work and giving valuable suggestions. We would also like to thank the staff at JTNP for their support. This research was supported by the National Park Service Robert Lee Graduate Student Research Grant, and the Utah Agricultural Experiment Station, Utah State University, and approved as journal paper number 8997. References Cited Boehme, N. F., Tanner D. A., Williams K. A., and Pitts J. P.. 2012. Faunal study of the velvet ants (Hymenoptera: Mutillidae) and their activity patterns and habitat preference at Ash Meadows National Wildlife Refuge, Nye County, Nevada, USA. Zootaxa  3587: 1– 45. Borowiec, M. L., and Kimsey L. S.. 2015. The first host record for the wasp subfamily Brachycistidinae (Hyemnoptera: Tiphiidae). Proc. Ent. Soc. Wash . 117: 62– 64. Google Scholar CrossRef Search ADS   Bray, J. R., and Curtis J. T.. 1957. An ordination of upland forest communities of southern Wisconsin. Ecol. Monographs  27: 325– 349. Google Scholar CrossRef Search ADS   Brothers, D. J., and Finnamore A. T.. 1993. Vespoidea. In H. Goulet & J.T. Huber (eds.) Hymenoptera of the World: An identification guide to the families . Centre for Land and Biological Resources Research, Ontario, Canada. Brothers, D. J., Tschuch G., and Burger F.. 2000. Associations of mutillid wasps (Hymenoptera, Mutillidae) with eusocial insects. Ins. Soc . 47: 201– 211. Google Scholar CrossRef Search ADS   Bruner, A. G., Gullison R. E., Rice R. E., and Da Fonseca G. A.. 2001. Effectiveness of parks in protecting tropical biodiversity. Sci . 291: 125– 128. Google Scholar CrossRef Search ADS   Buzicky, A.W. 1941. A Monograph of the Genus Chyphotes (Hymenoptera, Mutillidae, Apterogyninae) of North America. Ento. Amer . 21: 201– 243. Clevenger, A. P., and Waltho N.. 2000. Factors influencing the effectiveness of wildlife underpasses in Banff National Park, Alberta, Canada. Cons. Bio . 14: 47– 56. Google Scholar CrossRef Search ADS   Frank, D. A., and McNaughton S. J.. 1992. The ecology of plants, large mammalian herbivores, and drought in Yellowstone National Park. Ecol . 73: 2043– 2058. Google Scholar CrossRef Search ADS   Kimsey, L. S., and Wasbauer M. S.. 1998. Revision of the American tiphiid genus Quemaya Pate (Hymenoptera: Tiphiidae: Brachycistidinae). J. Hym. Res . 7: 38– 47. Kimsey, L. S., and Wasbauer M. S.. 2006. Phylogeny and checklist of the nocturnal tiphiids of the Western Hemisphere (Hymenoptera: Tiphiidae: Brachycistidinae). J. Hym. Res . 15: 9– 25. Kimsey, L. S., and Wasbauer M. S.. 2013. Revision of the brachycistidine genus Colocistis Krombein, 1942 (Hymenoptera, Tiphiidae). J. Hym. Res . 33: 1– 24. Kimsey, L. S., and Wasbauer M. S.. 2015. Revision of the odd brachycistidine genus Acanthetropis Wasbauer, 1958 (Hymenoptera, Tiphiidae, Brachycistidinae). J. Hym. Res . 44: 19– 30. Mickel, C. E. 1967. A review of the Mutillid genus Chyphotes Blake (Hymenoptera; Mutillidae; Apterogyninae). Trans. Amer. Ent. Soc . 93: 125– 234. Miller, R. I., and White P. S.. 1986. Considerations for preserve design based on the distribution of rare plants in Great Smoky Mountains National Park, USA. Environ. Management  10: 119– 124. Google Scholar CrossRef Search ADS   Moritz, C., Patton J. L., Conroy C. J., Parra J. L., White G. C., and Beissinger S. R.. 2008. Impact of a century of climate change on small-mammal communities in Yosemite National Park, USA. Sci . 322: 261– 264. Google Scholar CrossRef Search ADS   National Parks Service (NPS). U.S. Department of the Interior. 2016. Park History. https://www.nps.gov/jotr/learn/historyculture/parkhistory.htm (accessed 16 August 2017). Phillips, S. J., Wentworth P., Dimmitt M. A., and Brewer L. M.. 2015. A Natural History of the Sonoran Desert . University of California Press, Berkeley, CA. Ricketts, T. H., Dinerstein E., Olson D. M., Loucks C. J., Eichbaum E., DellaSala D., Kavanagh K., Hedao P., Hurley P. T., Carney K. M.,et al.   1999. Terrestrial Ecoregions of North America: A Conservation Assessment . Island Press, Washington, D.. Schuster, R. M. 1958. A revision of the Sphaeropthalmine Mutillidae of America North of Mexico. II. Ent. Amer . 37: 1– 130. Sørensen, T. 1948. A method of establishing groups of equal amplitude in plant sociology based on similarity of species content and its application to analyses of the vegetation on Danish commons. Biol. Skrif. Kong. Dans. Vidensk. Selsk . 5: 1– 34. Wasbauer, M. S. 1966. Revision of the male wasps of the genus Brachycisits in America north of Mexico (Hymenoptera: Tiphiidae). Univ. Cal. Pub. Ent . 43: 1– 96. © The Author(s) 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Annals of the Entomological Society of America Oxford University Press

Faunal Study of the Nocturnal Aculeate Wasps (Hymenoptera) of the Sonoran and Mojave Deserts of Joshua Tree National Park

Loading next page...
 
/lp/ou_press/faunal-study-of-the-nocturnal-aculeate-wasps-hymenoptera-of-the-MThIqN5YPC
Publisher
Entomological Society of America
Copyright
© The Author(s) 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
ISSN
0013-8746
eISSN
1938-2901
D.O.I.
10.1093/aesa/sax074
Publisher site
See Article on Publisher Site

Abstract

Abstract Nocturnal aculeate wasps (Hymenoptera: Chyphotidae, Brachycistidinae [Tiphiidae], and Mutillidae) are abundant in North America’s deserts, yet their patterns of diversity are not well studied. Here we report on the diversity of these groups in Joshua Tree National Park (JTNP). On the basis of collection data from a transect of 14 sampling sites transitioning from the Mojave to the Sonoran Desert, our study shows that there are at least 11 species of Chyphotes (Chyphotidae), based on the collection of 1,513 specimens, there are at least 22 species of brachycistidine Tiphiidae species in five genera, based on the collection of 13,960 specimens, and at least 35 species of nocturnal mutillids in six genera, based on 8,477 specimens. Brachycistidine Tiphiidae populations peak earlier in the season compared with the other two groups. Also we found an increase in Chyphotidae, Brachycistidinae, and Mutillidae diversity and abundance with decreasing latitude. Several species appear to be spatially restricted to one desert region; others exhibit temporal isolation, only being collected during specific months. Our study suggests that JTNP houses a diverse community of nocturnal aculeate wasps with the Sonoran Desert being more diverse than the Mojave Desert. National Parks and other protected areas can play an important role in the maintenance of biodiversity (Bruner et al. 2001). In North America, much of the conservation efforts in national parks have focused on vertebrates (Clevenger and Waltho 2000, Mortiz et al. 2008) or on rare plants (Miller and White 1986, Frank and McNaughton 1992). Despite the conservation focus of National Parks in the United States, little has been published about the diverse insect communities housed in these protected areas. Joshua Tree National Park (JTNP) is unique in that it contains portions of two distinct desert ecoregions. This park gained U.S. National Park status in 1994 and is large covering ~3,200 ha in southeastern California (National Parks Service). The northern regions of JTNP are part of the Mojave Desert and the southern regions are part of the Sonoran Desert. These two deserts that exist within JTNP, and the transition zone connecting them, provide a unique opportunity to study patterns of insect biodiversity in a potentially diverse ecotone. Nocturnal aculeate wasps (Hymenoptera: Chyphotidae, Brachycistidinae [Tiphiidae], and Mutillidae) are ubiquitous in North America’s deserts, and, although it is expected that they would play an important role in the ecology of these areas, their patterns of diversity, however, are not well studied. Chyphotes Blake (Hymenoptera: Chyphotidae) is a genus of wasp that includes many species endemic to the deserts of North America, though some species can be found as far south as Mexico. Chyphotes females, as well as the related genera in Typhoctinae, presumably parasitize the larval or pupal stages of Coleoptera, based on phylogenetic relationships, but Brothers and Finnamore (1993) suggested camel spiders (Arachnida: Solifugae) based on a single record. This is the only sparse natural history information that exists for this group. Although the genus has been revised twice previously by Buzicky (1941) and Mickel (1967), the taxonomy remains unsettled, making species identification challenging. In the southwestern deserts of the United States, nocturnal wasps in the family Tiphiidae (Hymenoptera: Tiphiidae: Brachycistidinae) likely play an important ecological role as parasitoids based on their high abundance. However, little has been published on this group besides taxonomy. Many Brachycistidinae are endemic to specific arid regions of North America (Kimsey and Wasbauer 2006), though the subfamily can be found as far south as Costa Rica. Little is known about the natural history of this group, but it is thought that Brachycistidinae females parasitize the larval or pupal stages of Coleoptera, based on a single recent record (Borowiec and Kimsey 2015). Mutillidae (Hymenoptera), also known as velvet ants, is a family of wasp that also has species, both diurnal and nocturnal, endemic to the deserts of North America. However, the nocturnal velvet ant fauna of JTNP is poorly known. Velvet ant females parasitize the larval or pupal stages of holometabolous insects, such as Diptera, Coleoptera, and Hymenoptera, with most known hosts being aculeate Hymenoptera (Brothers et al. 2000). As with Chyphotes, only sparse natural history information exists for most species of velvet ants. For all three of these groups, the females presumably spend most of their time underground searching for hosts, and, therefore, are encountered less frequently than males. Males of these groups, however, are easily collected as they are attracted to light traps. The objectives of this study are to determine species diversity of nocturnal aculeate wasps at JTNP, to determine faunal differences between the different deserts of the park, and to determine relative species abundances in the distinct desert regions. Specimens were collected in a transect spanning both deserts and the transition zone. Understanding patterns of diversity in diverse, desert-adapted insects can inform future conservation efforts and will lead to a better understanding of biodiversity in JTNP. Materials and Methods JTNP includes the Mojave Desert, Sonoran Desert, and transition zone between the two. These areas can be identified based on their characteristic vegetation. JTNP is named after the Joshua tree (Yucca brevifolia), which is endemic to the Mojave Desert and is restricted to the northern portion of the park. This area also houses piñon pine (Pinus monophylla), California juniper (Juniperus californica), desert scrub oak (Quercus turbinella), Tucker’s oak (Quercus john-tuckeri), and Muller oak (Quercus cornelius-mulleri) (Ricketts et al. 1999). The southern part of the park, below 910 m, in the Sonoran Desert has flora that includes creosote bush (Larrea tridentata), scrub ocotillo (Fouquieria splendens), desert saltbush (Atriplex spp.), Yucca and cholla cactus (Cylindropuntia bigelovii) (Ricketts et al. 1999). Within JTNP, Pinto Basin Road served as the perfect transect between the Mojave and Sonoran deserts. Beginning at the park boundary at the North Entrance and continuing along Pinto Basin Road to the Cottonwood Visitor Center, light traps were deployed approximately every 5 km (Table 1). Trapping along Pinto Basin Road provided a 43-km transect with a 727 m change in elevation. This allowed five light traps to be placed in the Mojave Desert; the sites of these traps are designated N9, N7, N5, N3, and N1, where N stands for north of the transition zone and the number represents the distance from the transition zone in miles. This also allowed for one trap in the transition zone (T) and eight traps south of the transition zone in the Sonoran Desert (S1, S3, S5, S7, S9, S11, S13, and S18). Once again, where S stands for south of the transition zone and the number represents the distance from the transition zone in miles (Fig. 1). Table 1. Joshua Tree National Park Transect Site Information Site name  Site location  Distance from road edge (m)  Elevation (m)  Dominant vegetation type  N9  N34.00482 W116.04924  66  1,268  Joshua Tree  N7  N34.02017 W116.01778  88  1,111  Yucca & Joshua Trees  N5  N33.99412 W116.02134  90  1,193  Yucca and Joshua Trees  N3  N33.97477 W115.99798  60  1,050  Yucca and Creosote  N1  N33.95148 W115.98084  76  900  Creosote and Cheesebush  T  N33.94111 W115.96973  59  842  Creosote, Mesquite, and Smoke tree  S1  N33.93315 W115.95633  56  774  Smoke tree  S3  N33.92409 W115.92458  32  631  Jumping Cholla  S5  N33.92305 W115.89362  56  559  Small Creosote  S7  N33.91169 W115.86460  71  541  Small Creosote and Cheesebush  S9  N33.90141 W115.83225  64  544  Small Creosote  S11  N33.87896 W115.81215  77  608  Creosote and Mormon tea  S13  N33.85631 W115.79056  55  680  Creosote  S18  N33.80103 W115.78088  62  851  Creosote  Site name  Site location  Distance from road edge (m)  Elevation (m)  Dominant vegetation type  N9  N34.00482 W116.04924  66  1,268  Joshua Tree  N7  N34.02017 W116.01778  88  1,111  Yucca & Joshua Trees  N5  N33.99412 W116.02134  90  1,193  Yucca and Joshua Trees  N3  N33.97477 W115.99798  60  1,050  Yucca and Creosote  N1  N33.95148 W115.98084  76  900  Creosote and Cheesebush  T  N33.94111 W115.96973  59  842  Creosote, Mesquite, and Smoke tree  S1  N33.93315 W115.95633  56  774  Smoke tree  S3  N33.92409 W115.92458  32  631  Jumping Cholla  S5  N33.92305 W115.89362  56  559  Small Creosote  S7  N33.91169 W115.86460  71  541  Small Creosote and Cheesebush  S9  N33.90141 W115.83225  64  544  Small Creosote  S11  N33.87896 W115.81215  77  608  Creosote and Mormon tea  S13  N33.85631 W115.79056  55  680  Creosote  S18  N33.80103 W115.78088  62  851  Creosote  Site names indicate location in reference to the transition zone between the Mojave and Sonoran deserts and distance in miles from the transition zone. Site names labeled as N indicate it was located north of the transition zone (Mojave Desert), T indicates it is directly in the transition zone, and S indicates it was south of the transition zone (Sonoran Desert). View Large Fig. 1. View largeDownload slide Joshua Tree National Park map (gray) with park boundary. Location of the Sonoran Desert, transition zone, and Mojave Desert are labeled. Transect collection sites are indicated on the map by circles and are labeled with site names corresponding to Table 1. Fig. 1. View largeDownload slide Joshua Tree National Park map (gray) with park boundary. Location of the Sonoran Desert, transition zone, and Mojave Desert are labeled. Transect collection sites are indicated on the map by circles and are labeled with site names corresponding to Table 1. Specimens were collected from each site using light traps. The light traps consisted of a fluorescent battery-powered camping lantern and small, clear bowls filled with slightly soapy water. Lights were turned on at dusk and off at dawn. Sites were sampled four times, once each month from July to October 2012 (18–21 July, 26–28 August, 22–24 September, and 26–28 October). During each sampling event, traps were deployed each evening for a total of two to three nights. Sampling was restricted to July to October due to permitting. All collected specimens were stored in 95% ethanol initially, and pinned, labeled, and identified at the Entomological Collection at Utah State University (EMUS). GPS locations were determined for each collection site (Table 1). The species of Chyphotes were identified using Buzicky (1941) and Mickel (1967), as well as through the study of type material. The brachycistidine genera of Tiphiidae were identified using Kimsey and Wasbauer (2006) and the reference collection at EMUS identified by Wasbauer. The species of Acanthetropis Wasbauer, Brachycistis Fox, Colocistis Krombein, and Stilbopogon Mickel and Krombein were identified using Wasbauer (1966) and Kimsey and Wasbauer (1998, 2013, 2015). The mutillid genera were identified based on Schuster (1958) and the reference collection housed at EMUS. The Sørensen’s similarity index (Sørensen, 1948), which is based on presences/absences, was used to determine the similarity between two sites. A pair-wise comparison of all sites using the Sørensen’s similarity index can be found in Table 5. The Bray–Curtis dissimilarity index (Bray and Curtis 1957), which is additionally based on abundances, was used to determine dissimilarity between two sites. A pair-wise comparison of all sites using the Bray–Curtis dissimilarity index can be found in Table 6. Results and Discussion Chyphotes (Chyphotidae) Our trapping efforts resulted in the collection of 1,513 male specimens representing 11 species (Table 2). Chyphotes aenigmus Mickel (n = 460), Chyphotes melaniceps (Blake) (n = 320), and Chyphotes atriceps Mickel (n = 301) are the most abundant of all the species found at the park. The rarest species, those with less than 10 individuals found throughout the course of the study, include only Chyphotes boharti Mickel (one specimen) and C. sp. nov. (five specimens), which will be described in a different publication. Table 2. Number of individuals of each Chyphotes species collected at each site from north to south Species  Collecting site  N9  N7  N5  N3  N1  T  S1  S3  S5  S7  S9  S11  S13  S18  Total no. per spp.  Chyphotes aenigmus  3  1  1  7  19  25  36  93  47  28  31  27  67  75  460  Chyphotes atriceps  13  43  17  42  15  2  17  5  4  16  15  24  19  69  301  Chyphotes boharti  –  –  –  –  –  –  –  –  1  –  –  –  –  –  1  Chyphotes calexicensis  –  –  –  –  –  –  –  –  7  14  14  6  3  2  46  Chyphotes californicus  2  2  1  –  37  48  31  2  1  –  –  3  2  10  139  Chyphotes incredulus  –  –  –  –  –  –  –  –  18  31  22  13  3  –  87  Chyphotes melaniceps  –  –  1  1  21  11  59  62  5  7  11  16  41  85  320  Chyphotes attenuatus  4  –  5  10  2  –  –  –  1  –  –  –  7  23  52  Chyphotes minisculus  –  –  –  –  7  16  –  –  2  1  1  2  5  1  35  Chyphotes pallidus  –  –  –  –  –  –  –  3  21  33  5  4  –  1  67  Chyphotes sp. nov.  –  –  –  –  –  –  –  –  –  1  1  2  –  1  5  Total no. per site  22  46  25  60  101  102  143  165  107  131  100  97  147  267  = 1,513  Species  Collecting site  N9  N7  N5  N3  N1  T  S1  S3  S5  S7  S9  S11  S13  S18  Total no. per spp.  Chyphotes aenigmus  3  1  1  7  19  25  36  93  47  28  31  27  67  75  460  Chyphotes atriceps  13  43  17  42  15  2  17  5  4  16  15  24  19  69  301  Chyphotes boharti  –  –  –  –  –  –  –  –  1  –  –  –  –  –  1  Chyphotes calexicensis  –  –  –  –  –  –  –  –  7  14  14  6  3  2  46  Chyphotes californicus  2  2  1  –  37  48  31  2  1  –  –  3  2  10  139  Chyphotes incredulus  –  –  –  –  –  –  –  –  18  31  22  13  3  –  87  Chyphotes melaniceps  –  –  1  1  21  11  59  62  5  7  11  16  41  85  320  Chyphotes attenuatus  4  –  5  10  2  –  –  –  1  –  –  –  7  23  52  Chyphotes minisculus  –  –  –  –  7  16  –  –  2  1  1  2  5  1  35  Chyphotes pallidus  –  –  –  –  –  –  –  3  21  33  5  4  –  1  67  Chyphotes sp. nov.  –  –  –  –  –  –  –  –  –  1  1  2  –  1  5  Total no. per site  22  46  25  60  101  102  143  165  107  131  100  97  147  267  = 1,513  Sites beginning with ‘N’ were Mojave Desert sites, those beginning with ‘S’ were Sonoran Desert sites, and ‘T’ indicates a site in the transition zone. View Large Tiphiidae (Brachycistidinae) Our trapping efforts resulted in the collection of 13,960 male specimens representing 22 species (Table 3). The most abundant species collected at JTNP were Colocistis castanea (Cresson) (n = 2,842), Colocistis brevis (Fox) (n = 2,241), and Acanthetropis noctivaga (n = 1,237). The rarest species was Brachycistis elegantula Cockerell and Casad (two specimens) (Table 3). Table 3. Number of individuals of each Brachycistidinae species collected at each site from north to south Species  Collecting site  N9  N7  N5  N3  N1  T  S1  S3  S5  S7  S9  S11  S13  S18  Total no. per spp.  Acanthetropis noctivaga  1  3  4  26  4  7  31  44  90  119  160  110  314  324  1,237  Brachycistis agama  –  –  –  –  –  –  –  –  4  31  5  17  14  –  71  Brachycistis curvata  19  21  254  23  1  1  –  17  34  33  29  18  7  4  461  Brachycistis elegantula  –  –  –  –  –  –  –  –  –  –  1  –  1  –  2  Brachycistis imitans  1  1  4  –  –  –  –  –  –  1  1  1  11  4  24  Brachycistis inaequalis  9  13  1  1  1  –  –  –  45  296  66  3  2  –  437  Brachycistis linsleyi  26  30  50  35  4  5  9  19  52  101  144  255  235  23  988  Brachycistis petiolata  –  –  –  –  –  –  –  –  17  30  36  4  –  –  87  Brachycistis timberlakei  1  40  114  74  –  1  1  20  85  194  206  189  137  40  1,102  Brachycistis triangularis  7  –  4  3  18  56  61  33  182  120  111  84  77  86  842  Brachycistis vigilax  1  4  27  73  –  1  1  6  69  111  156  18  10  9  486  Brachycistina acuta  44  47  21  39  19  11  7  44  125  262  71  135  135  24  984  Colocistis brevis  1  8  4  7  64  89  245  314  418  537  219  180  45  110  2,241  Colocistis castanea  45  63  30  61  106  175  264  54  73  67  52  138  137  1577  2,842  Colocistis crassa  62  16  21  13  3  1  3  2  –  1  9  85  72  34  322  Colocistis eremi  –  1  –  1  14  2  31  132  89  99  48  271  85  113  886  Colocistis themarum  5  8  7  9  45  103  84  18  8  5  5  9  4  2  312  Stilbopogon inermis  –  –  –  –  29  43  29  4  17  9  46  11  2  2  192  Stilbopogon marcida  –  –  –  –  5  9  9  1  68  52  75  28  21  7  275  Stilbopogon megalops  –  1  –  –  13  49  20  –  4  2  8  1  1  –  99  Stilbopogon paupercula  –  –  –  –  1  –  5  –  6  1  4  –  –  –  17  Stilbopogon perpunctata  –  –  –  –  1  4  1  1  8  24  9  4  –  1  53  Total no. per site  222  256  541  365  328  557  801  709  1394  2095  1461  1561  1310  2360  = 13,960  Species  Collecting site  N9  N7  N5  N3  N1  T  S1  S3  S5  S7  S9  S11  S13  S18  Total no. per spp.  Acanthetropis noctivaga  1  3  4  26  4  7  31  44  90  119  160  110  314  324  1,237  Brachycistis agama  –  –  –  –  –  –  –  –  4  31  5  17  14  –  71  Brachycistis curvata  19  21  254  23  1  1  –  17  34  33  29  18  7  4  461  Brachycistis elegantula  –  –  –  –  –  –  –  –  –  –  1  –  1  –  2  Brachycistis imitans  1  1  4  –  –  –  –  –  –  1  1  1  11  4  24  Brachycistis inaequalis  9  13  1  1  1  –  –  –  45  296  66  3  2  –  437  Brachycistis linsleyi  26  30  50  35  4  5  9  19  52  101  144  255  235  23  988  Brachycistis petiolata  –  –  –  –  –  –  –  –  17  30  36  4  –  –  87  Brachycistis timberlakei  1  40  114  74  –  1  1  20  85  194  206  189  137  40  1,102  Brachycistis triangularis  7  –  4  3  18  56  61  33  182  120  111  84  77  86  842  Brachycistis vigilax  1  4  27  73  –  1  1  6  69  111  156  18  10  9  486  Brachycistina acuta  44  47  21  39  19  11  7  44  125  262  71  135  135  24  984  Colocistis brevis  1  8  4  7  64  89  245  314  418  537  219  180  45  110  2,241  Colocistis castanea  45  63  30  61  106  175  264  54  73  67  52  138  137  1577  2,842  Colocistis crassa  62  16  21  13  3  1  3  2  –  1  9  85  72  34  322  Colocistis eremi  –  1  –  1  14  2  31  132  89  99  48  271  85  113  886  Colocistis themarum  5  8  7  9  45  103  84  18  8  5  5  9  4  2  312  Stilbopogon inermis  –  –  –  –  29  43  29  4  17  9  46  11  2  2  192  Stilbopogon marcida  –  –  –  –  5  9  9  1  68  52  75  28  21  7  275  Stilbopogon megalops  –  1  –  –  13  49  20  –  4  2  8  1  1  –  99  Stilbopogon paupercula  –  –  –  –  1  –  5  –  6  1  4  –  –  –  17  Stilbopogon perpunctata  –  –  –  –  1  4  1  1  8  24  9  4  –  1  53  Total no. per site  222  256  541  365  328  557  801  709  1394  2095  1461  1561  1310  2360  = 13,960  Sites beginning with “N” were Mojave Desert sites, those beginning with “S” were Sonoran Desert sites, and “T” indicates a site in the transition zone. View Large Mutillidae Our trapping efforts resulted in 35 species in six genera totaling 8,477 male specimens (Table 4). Odontophotopsis microdonta Ferguson (n = 1,803), O. clypeata Schuster (n = 1,036), and Sphaeropthalma yumaella Schuster (n = 825) are the most abundant of all the species found at the park. The rarest species, those with less than 10 individuals found throughout the course of the study, include Odontophotopsis dalyi Sadler and Pitts (4 specimens), Odontophotopsis obscura (Cockerell) (3), Odontophotopsis odontoloxia Sadler and Pitts (1), Odontophotopsis parva Schuster (2), Odontophotopsis setifera Schuster (8), Photomorphus schoenwerthi Sadler and Pitts (1), Sphaeropthalma nana (Ashmead) (1), and Sphaeropthalma triangularis (Blake) (2) (Table 4). O. setifera Schuster and also S. nana were considered rare according to surveys of the Ash Meadows National Wildlife Refuge (Boehme et al. 2012). Table 4. Number of individuals of each Mutillidae species collected at each site from north to south Species  Collecting site  N9  N7  N5  N3  N1  T  S1  S3  S5  S7  S9  S11  S13  S18  Total no. per spp.  Acanthophotopsis falciformis  –  –  –  –  –  2  3  –  5  2  14  3  3  2  34  Acrophotopsis dirce  1  20  3  5  12  9  7  1  1  –  13  –  1  23  96  Dilophotopsis paron  49  11  41  4  7  5  1  2  –  1  –  6  5  134  266  Odontophotopsis armata  –  11  2  3  20  84  130  6  1  2  2  –  1  3  265  Odontophotopsis bellona  4  5  8  8  2  14  41  77  40  20  45  9  15  49  337  Odontophotopsis biramosa  –  –  –  –  –  –  –  2  4  5  3  6  10  1  31  Odontophotopsis clypeata  1  4  –  5  3  3  49  128  144  203  71  108  107  210  1,036  Odontophotopsis dalyi  –  2  –  –  –  –  –  –  –  2  –  –  –  –  4  Odontophotopsis delodonta  –  2  –  1  –  1  6  7  8  52  48  18  17  1  161  Odontophotopsis inconspicua  –  1  –  5  5  17  104  18  3  10  30  11  13  59  276  Odontophotopsis mamata  –  –  –  –  1  29  75  19  2  6  3  4  2  12  153  Odontophotopsis melicausa  10  15  –  9  –  2  4  –  –  1  –  9  13  23  86  Odontophotopsis microdonta  79  53  76  125  22  19  13  195  23  11  43  724  286  134  1,803  Odontophotopsis obscura  –  –  –  –  –  –  –  –  –  –  3  –  –  –  3  Odontophotopsis odontoloxia  –  –  –  –  –  –  –  –  1  –  –  –  –  –  1  Odontophotopsis parva  –  –  –  –  –  –  –  –  –  –  2  –  –  –  2  Odontophotopsis quadrispinosa  –  –  –  3  –  2  7  26  11  20  26  24  4  5  128  Odontophotopsis serca  3  6  1  8  51  256  375  19  5  2  10  17  6  17  776  Odontophotopsis setifera  –  –  –  –  –  –  –  –  –  –  –  –  –  8  8  Odontophotopsis sonora  –  –  –  –  –  –  1  1  1  5  4  –  –  –  12  Photomorphus schoenwerthi  –  –  –  –  –  –  –  –  –  –  –  –  –  1  1  Sphaeropthalma amphion  3  2  3  1  5  16  34  14  2  3  3  2  9  9  106  Sphaeropthalma angulifera  14  –  9  –  –  1  –  –  –  –  –  –  1  6  31  Sphaeropthalma arota  –  1  –  –  1  5  6  3  2  1  –  –  3  8  30  Sphaeropthalma becki  –  2  7  13  11  34  13  48  32  23  9  50  44  57  343  Sphaeropthalma blakeii  11  10  37  66  8  2  15  19  15  18  31  18  58  93  401  Sphaeropthalma difficilis  20  37  43  40  17  39  62  70  57  111  89  63  67  106  821  Sphaeropthalma fergusoni  1  1  –  2  1  52  70  7  1  5  2  3  5  9  159  Sphaeropthalma macswaini  –  –  –  –  3  32  10  –  –  –  –  –  –  –  45  Sphaeropthalma megagnathos  –  –  –  –  –  –  1  –  –  –  –  –  –  11  12  Sphaeropthalma mendica  –  1  1  3  2  4  16  2  –  –  5  –  7  154  195  Sphaeropthalma nana  –  1  –  –  –  –  –  –  –  –  –  –  –  –  1  Sphaeropthalma pallidipes  –  –  –  –  –  –  –  –  7  12  7  –  1  –  27  Sphaeropthalma triangularis  –  –  1  –  –  –  –  –  –  1  –  –  –  –  2  Sphaeropthalma yumaella  2  2  21  55  26  16  49  81  74  64  91  52  132  160  825  Total no. per site  198  187  253  356  197  644  1092  745  439  580  554  1127  810  1295  = 8,477  Species  Collecting site  N9  N7  N5  N3  N1  T  S1  S3  S5  S7  S9  S11  S13  S18  Total no. per spp.  Acanthophotopsis falciformis  –  –  –  –  –  2  3  –  5  2  14  3  3  2  34  Acrophotopsis dirce  1  20  3  5  12  9  7  1  1  –  13  –  1  23  96  Dilophotopsis paron  49  11  41  4  7  5  1  2  –  1  –  6  5  134  266  Odontophotopsis armata  –  11  2  3  20  84  130  6  1  2  2  –  1  3  265  Odontophotopsis bellona  4  5  8  8  2  14  41  77  40  20  45  9  15  49  337  Odontophotopsis biramosa  –  –  –  –  –  –  –  2  4  5  3  6  10  1  31  Odontophotopsis clypeata  1  4  –  5  3  3  49  128  144  203  71  108  107  210  1,036  Odontophotopsis dalyi  –  2  –  –  –  –  –  –  –  2  –  –  –  –  4  Odontophotopsis delodonta  –  2  –  1  –  1  6  7  8  52  48  18  17  1  161  Odontophotopsis inconspicua  –  1  –  5  5  17  104  18  3  10  30  11  13  59  276  Odontophotopsis mamata  –  –  –  –  1  29  75  19  2  6  3  4  2  12  153  Odontophotopsis melicausa  10  15  –  9  –  2  4  –  –  1  –  9  13  23  86  Odontophotopsis microdonta  79  53  76  125  22  19  13  195  23  11  43  724  286  134  1,803  Odontophotopsis obscura  –  –  –  –  –  –  –  –  –  –  3  –  –  –  3  Odontophotopsis odontoloxia  –  –  –  –  –  –  –  –  1  –  –  –  –  –  1  Odontophotopsis parva  –  –  –  –  –  –  –  –  –  –  2  –  –  –  2  Odontophotopsis quadrispinosa  –  –  –  3  –  2  7  26  11  20  26  24  4  5  128  Odontophotopsis serca  3  6  1  8  51  256  375  19  5  2  10  17  6  17  776  Odontophotopsis setifera  –  –  –  –  –  –  –  –  –  –  –  –  –  8  8  Odontophotopsis sonora  –  –  –  –  –  –  1  1  1  5  4  –  –  –  12  Photomorphus schoenwerthi  –  –  –  –  –  –  –  –  –  –  –  –  –  1  1  Sphaeropthalma amphion  3  2  3  1  5  16  34  14  2  3  3  2  9  9  106  Sphaeropthalma angulifera  14  –  9  –  –  1  –  –  –  –  –  –  1  6  31  Sphaeropthalma arota  –  1  –  –  1  5  6  3  2  1  –  –  3  8  30  Sphaeropthalma becki  –  2  7  13  11  34  13  48  32  23  9  50  44  57  343  Sphaeropthalma blakeii  11  10  37  66  8  2  15  19  15  18  31  18  58  93  401  Sphaeropthalma difficilis  20  37  43  40  17  39  62  70  57  111  89  63  67  106  821  Sphaeropthalma fergusoni  1  1  –  2  1  52  70  7  1  5  2  3  5  9  159  Sphaeropthalma macswaini  –  –  –  –  3  32  10  –  –  –  –  –  –  –  45  Sphaeropthalma megagnathos  –  –  –  –  –  –  1  –  –  –  –  –  –  11  12  Sphaeropthalma mendica  –  1  1  3  2  4  16  2  –  –  5  –  7  154  195  Sphaeropthalma nana  –  1  –  –  –  –  –  –  –  –  –  –  –  –  1  Sphaeropthalma pallidipes  –  –  –  –  –  –  –  –  7  12  7  –  1  –  27  Sphaeropthalma triangularis  –  –  1  –  –  –  –  –  –  1  –  –  –  –  2  Sphaeropthalma yumaella  2  2  21  55  26  16  49  81  74  64  91  52  132  160  825  Total no. per site  198  187  253  356  197  644  1092  745  439  580  554  1127  810  1295  = 8,477  Sites beginning with “N” were Mojave Desert sites, those beginning with “S” were Sonoran Desert sites, and “T” indicates a site in the transition zone. View Large Biogeographical and Ecological Trends There was a trend showing an increase in the abundance and diversity of all three groups with decreasing latitude (i.e., more specimens representing more species were collected at the south end of the park than the north end) with an average of 631 specimens per site caught in the Mojave Desert, 1,303 in the transition zone and 2,436 in the Sonoran Desert. Furthermore, the similarity of the sites decreased and the dissimilarity increased as sites are compared from north (Mojave Desert) to south (Sonoran Desert) (Tables 5 and 6), although some adjacent sites, such as S5, S7, and S11, were quite similar. For nocturnal aculeate wasps, the Sonoran Desert is more diverse than the Mojave Desert, which is the case for other flora and fauna (Phillips et al. 2015). Given the number of specimens collected and the parasitic nature of all three of these groups, aculeate nocturnal wasps must be ecologically significant in these deserts reducing the overall numbers of both potential pollinators, predatory hymenopterans, and phytophagous insects. Table 5. Sørensen’s similarity coefficient based on the combined presence/absence data for all three groups of nocturnal wasps (Hymenoptera: Chyphotidae, Brachycistidinae [Tiphiidae], and Mutillidae)   N9  N7  N5  N3  N1  T  S1  S3  S5  S7  S9  S11  S13  S18  N9                              N7  0.83                            N5  0.87  0.80                          N3  0.84  0.90  0.85                        N1  0.72  0.81  0.76  0.80                      T  0.75  0.86  0.76  0.85  0.87                    S1  0.68  0.82  0.69  0.81  0.86  0.92                  S3  0.71  0.83  0.75  0.84  0.84  0.88  0.89                S5  0.63  0.71  0.64  0.73  0.80  0.80  0.81  0.84              S7  0.63  0.73  0.63  0.74  0.77  0.81  0.82  0.83  0.91            S9  0.59  0.70  0.63  0.74  0.76  0.78  0.79  0.82  0.90  0.91          S11  0.69  0.75  0.65  0.77  0.77  0.83  0.80  0.83  0.88  0.93  0.88        S13  0.73  0.81  0.74  0.82  0.82  0.90  0.83  0.84  0.88  0.87  0.86  0.88      S18  0.72  0.77  0.73  0.81  0.81  0.89  0.86  0.89  0.83  0.84  0.81  0.86  0.89      N9  N7  N5  N3  N1  T  S1  S3  S5  S7  S9  S11  S13  S18  N9                              N7  0.83                            N5  0.87  0.80                          N3  0.84  0.90  0.85                        N1  0.72  0.81  0.76  0.80                      T  0.75  0.86  0.76  0.85  0.87                    S1  0.68  0.82  0.69  0.81  0.86  0.92                  S3  0.71  0.83  0.75  0.84  0.84  0.88  0.89                S5  0.63  0.71  0.64  0.73  0.80  0.80  0.81  0.84              S7  0.63  0.73  0.63  0.74  0.77  0.81  0.82  0.83  0.91            S9  0.59  0.70  0.63  0.74  0.76  0.78  0.79  0.82  0.90  0.91          S11  0.69  0.75  0.65  0.77  0.77  0.83  0.80  0.83  0.88  0.93  0.88        S13  0.73  0.81  0.74  0.82  0.82  0.90  0.83  0.84  0.88  0.87  0.86  0.88      S18  0.72  0.77  0.73  0.81  0.81  0.89  0.86  0.89  0.83  0.84  0.81  0.86  0.89    A value of 1 indicates the two localities share all of the same species, and a value of 0 indicates they do not share any of the same species. Indices at, or above, 0.90 are bolded. View Large Table 6. Bray–Curtis dissimilarity coefficient based on the combined data for all three groups of nocturnal wasps (Hymenoptera: Chyphotidae, Brachycistidinae [Tiphiidae], and Mutillidae)   N9  N7  N5  N3  N1  T  S1  S3  S5  S7  S9  S11  S13  S18  N9                              N7  0.35                            N5  0.49  0.50                          N3  0.49  0.34  0.41                        N1  0.67  0.59  0.73  0.64                      T  0.83  0.75  0.83  0.75  0.42                    S1  0.87  0.81  0.85  0.76  0.57  0.32                  S3  0.73  0.69  0.73  0.58  0.66  0.66  0.51                S5  0.80  0.72  0.71  0.61  0.71  0.71  0.59  0.37              S7  0.86  0.79  0.76  0.70  0.79  0.78  0.67  0.50  0.26            S9  0.79  0.71  0.67  0.59  0.71  0.71  0.60  0.47  0.31  0.30          S11  0.77  0.75  0.73  0.65  0.74  0.73  0.66  0.46  0.46  0.46  0.43        S13  0.73  0.71  0.67  0.57  0.72  0.71  0.66  0.45  0.47  0.51  0.43  0.28      S18  0.84  0.81  0.82  0.73  0.80  0.76  0.65  0.57  0.65  0.66  0.64  0.62  0.49      N9  N7  N5  N3  N1  T  S1  S3  S5  S7  S9  S11  S13  S18  N9                              N7  0.35                            N5  0.49  0.50                          N3  0.49  0.34  0.41                        N1  0.67  0.59  0.73  0.64                      T  0.83  0.75  0.83  0.75  0.42                    S1  0.87  0.81  0.85  0.76  0.57  0.32                  S3  0.73  0.69  0.73  0.58  0.66  0.66  0.51                S5  0.80  0.72  0.71  0.61  0.71  0.71  0.59  0.37              S7  0.86  0.79  0.76  0.70  0.79  0.78  0.67  0.50  0.26            S9  0.79  0.71  0.67  0.59  0.71  0.71  0.60  0.47  0.31  0.30          S11  0.77  0.75  0.73  0.65  0.74  0.73  0.66  0.46  0.46  0.46  0.43        S13  0.73  0.71  0.67  0.57  0.72  0.71  0.66  0.45  0.47  0.51  0.43  0.28      S18  0.84  0.81  0.82  0.73  0.80  0.76  0.65  0.57  0.65  0.66  0.64  0.62  0.49    Values close to 1 indicate the communities at these locations are completely different, and values close to 0 indicate they are more similar. View Large Interestingly, there were several species that appeared to be restricted to the Sonoran Desert portions of the park. For example, Chyphotes boharti, Chyphotes calexicensis Bradley, Chyphotes pallidus Buzicky, Chyphotes incredulus Mickel, and C. sp. nov. (Table 2), Brachycistis agama (Dalla Torre), B. elegantula, and B. petiolata Fox (Table 3), and Acanthophotopsis falciformis Schuster, Odontophotopsis biramosa Schuster, O. obscura, O. odontoloxia, O. parva, O. setifera, O. sonora (Schuster), Photomorphus schoenwerthi, Sphaeropthalma megagnathos Schuster, and Sphaeropthalma pallidipes Schuster (Table 4) were only collected from Sonoran Desert sites. Several other species were much more common in the Sonoran Desert, although limited individuals were also collected north of the transition zone. For example, all five of the Stilbopogon species were primarily collected in the Sonoran Desert, with only a few individuals collected more than 1.6 km north of the transition zone. C. aenigmus was collected from every site, but only 31 individuals were collected from the Mojave region, while 404 individuals were collected from the Sonoran. Some species of mutillids, such as Odontophotopsis clypeata, Odontophotopsis delodonta Viereck, and Odontophotopsis inconspicua (Blake) showed a similar trend. Other species seemed to be most abundant in the transition between Mojave and Sonoran regions. For example, Stilbopogon megalops Kimsey and Wasbauer and Colocistis themarum (Bradley), while collected from both deserts, were more abundant in the transition zone site and sites adjacent to it. Chyphotes californicus Baker, while collected from both deserts, was found in higher abundance in the transition zone or in the sites adjacent to it. Surprisingly, none of the species collected were restricted to the Mojave Desert portions of the park, though one, Brachycistis curvata Malloch, was more abundant in the Mojave sites than in the Sonoran sites. The diversity of wasps was not even across the collecting dates. Unsurprisingly, the number of individuals collected decreased as the season progressed. For example, 8,287 brachycistidines were collected in July, 2,563 in August, 2,727 in September, and 383 in October. Although the beginning of the flight season could not be determined due to permitting, overall there was a decrease in abundance as the summer progressed. This pattern, however, was not consistent across all species. Some species, such as Co. brevis and Co. castanea, were more commonly collected in July. Other species, such as B. agama and B. curvata, were more often collected in September or October, and C. pallidus and A. falciformis were more commonly collected in the later summer months (August and September) than in July. In addition, brachycistidine tiphiids peaked earlier in the season compared with that of the other two groups. This suggests that in addition to the observation that some species are spatially isolated, some species also appear to be temporally isolated. Acknowledgments We would like to thank K. Weglarz (Utah State University, Logan, Utah) for her help in collecting and processing specimens and data, K.A. Williams (California Department of Food and Agriculture, Sacramento, CA) and G. Waldren (Utah State University, Logan, Utah) for reading the manuscript of this work and giving valuable suggestions. We would also like to thank the staff at JTNP for their support. This research was supported by the National Park Service Robert Lee Graduate Student Research Grant, and the Utah Agricultural Experiment Station, Utah State University, and approved as journal paper number 8997. References Cited Boehme, N. F., Tanner D. A., Williams K. A., and Pitts J. P.. 2012. Faunal study of the velvet ants (Hymenoptera: Mutillidae) and their activity patterns and habitat preference at Ash Meadows National Wildlife Refuge, Nye County, Nevada, USA. Zootaxa  3587: 1– 45. Borowiec, M. L., and Kimsey L. S.. 2015. The first host record for the wasp subfamily Brachycistidinae (Hyemnoptera: Tiphiidae). Proc. Ent. Soc. Wash . 117: 62– 64. Google Scholar CrossRef Search ADS   Bray, J. R., and Curtis J. T.. 1957. An ordination of upland forest communities of southern Wisconsin. Ecol. Monographs  27: 325– 349. Google Scholar CrossRef Search ADS   Brothers, D. J., and Finnamore A. T.. 1993. Vespoidea. In H. Goulet & J.T. Huber (eds.) Hymenoptera of the World: An identification guide to the families . Centre for Land and Biological Resources Research, Ontario, Canada. Brothers, D. J., Tschuch G., and Burger F.. 2000. Associations of mutillid wasps (Hymenoptera, Mutillidae) with eusocial insects. Ins. Soc . 47: 201– 211. Google Scholar CrossRef Search ADS   Bruner, A. G., Gullison R. E., Rice R. E., and Da Fonseca G. A.. 2001. Effectiveness of parks in protecting tropical biodiversity. Sci . 291: 125– 128. Google Scholar CrossRef Search ADS   Buzicky, A.W. 1941. A Monograph of the Genus Chyphotes (Hymenoptera, Mutillidae, Apterogyninae) of North America. Ento. Amer . 21: 201– 243. Clevenger, A. P., and Waltho N.. 2000. Factors influencing the effectiveness of wildlife underpasses in Banff National Park, Alberta, Canada. Cons. Bio . 14: 47– 56. Google Scholar CrossRef Search ADS   Frank, D. A., and McNaughton S. J.. 1992. The ecology of plants, large mammalian herbivores, and drought in Yellowstone National Park. Ecol . 73: 2043– 2058. Google Scholar CrossRef Search ADS   Kimsey, L. S., and Wasbauer M. S.. 1998. Revision of the American tiphiid genus Quemaya Pate (Hymenoptera: Tiphiidae: Brachycistidinae). J. Hym. Res . 7: 38– 47. Kimsey, L. S., and Wasbauer M. S.. 2006. Phylogeny and checklist of the nocturnal tiphiids of the Western Hemisphere (Hymenoptera: Tiphiidae: Brachycistidinae). J. Hym. Res . 15: 9– 25. Kimsey, L. S., and Wasbauer M. S.. 2013. Revision of the brachycistidine genus Colocistis Krombein, 1942 (Hymenoptera, Tiphiidae). J. Hym. Res . 33: 1– 24. Kimsey, L. S., and Wasbauer M. S.. 2015. Revision of the odd brachycistidine genus Acanthetropis Wasbauer, 1958 (Hymenoptera, Tiphiidae, Brachycistidinae). J. Hym. Res . 44: 19– 30. Mickel, C. E. 1967. A review of the Mutillid genus Chyphotes Blake (Hymenoptera; Mutillidae; Apterogyninae). Trans. Amer. Ent. Soc . 93: 125– 234. Miller, R. I., and White P. S.. 1986. Considerations for preserve design based on the distribution of rare plants in Great Smoky Mountains National Park, USA. Environ. Management  10: 119– 124. Google Scholar CrossRef Search ADS   Moritz, C., Patton J. L., Conroy C. J., Parra J. L., White G. C., and Beissinger S. R.. 2008. Impact of a century of climate change on small-mammal communities in Yosemite National Park, USA. Sci . 322: 261– 264. Google Scholar CrossRef Search ADS   National Parks Service (NPS). U.S. Department of the Interior. 2016. Park History. https://www.nps.gov/jotr/learn/historyculture/parkhistory.htm (accessed 16 August 2017). Phillips, S. J., Wentworth P., Dimmitt M. A., and Brewer L. M.. 2015. A Natural History of the Sonoran Desert . University of California Press, Berkeley, CA. Ricketts, T. H., Dinerstein E., Olson D. M., Loucks C. J., Eichbaum E., DellaSala D., Kavanagh K., Hedao P., Hurley P. T., Carney K. M.,et al.   1999. Terrestrial Ecoregions of North America: A Conservation Assessment . Island Press, Washington, D.. Schuster, R. M. 1958. A revision of the Sphaeropthalmine Mutillidae of America North of Mexico. II. Ent. Amer . 37: 1– 130. Sørensen, T. 1948. A method of establishing groups of equal amplitude in plant sociology based on similarity of species content and its application to analyses of the vegetation on Danish commons. Biol. Skrif. Kong. Dans. Vidensk. Selsk . 5: 1– 34. Wasbauer, M. S. 1966. Revision of the male wasps of the genus Brachycisits in America north of Mexico (Hymenoptera: Tiphiidae). Univ. Cal. Pub. Ent . 43: 1– 96. © The Author(s) 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

Journal

Annals of the Entomological Society of AmericaOxford University Press

Published: Mar 1, 2018

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial