Factors Associated with Severe Dehydrating Diarrhoea in the Rural Western Cape, South Africa

Factors Associated with Severe Dehydrating Diarrhoea in the Rural Western Cape, South Africa Abstract Background Acute diarrhoea (AD) remains a leading cause of childhood death. We evaluated whether delayed healthcare seeking was associated with severe dehydration in rural South Africa. Methods In a prospective cohort study of children with AD admitted to a secondary-level hospital, data were collected through structured caregiver interviews and hospital record review. The primary outcome was severe dehydration/death, and the primary determinant was delay >12 h between AD symptom onset and healthcare facility presentation. Results Total 68% (71 of 104) of children experienced a delay, and 51% (54 of 104) had severe dehydration with no in-hospital deaths. There was no difference in children with (35 of 71) or without (19 of 33) delay for severe dehydration. Mothers of children with severe dehydration tended to be younger [median (interquartile range) 24 (21–28) vs. 27 (23–30) years, p = 0.07] and used less oral rehydration solution (63 vs. 80%, p = 0.08). Conclusion Delay of >12 h in seeking healthcare for AD was not associated with severe dehydration. diarrhoea, rural health, dehydration, South Africa INTRODUCTION Globally, despite little change in diarrhoea incidence, diarrhoea-associated mortality in children aged <5 years has declined over the past two decades because of improved access to care and interventions, including oral rehydration salts (ORS) and zinc supplementation [1]. However, in South Africa, diarrhoea is still the second leading cause of death in children aged <5 years, and in the Western Cape Province of South Africa, diarrhoea accounts for 11% of under-5 deaths [2–6]. Diarrhoea-associated mortality in childhood most often results directly from dehydration and its consequences; however, little is known about community or pre-hospital factors associated with the development or prevention of diarrhoea-associated dehydration [7, 8]. Younger age, underlying conditions such as malnutrition and HIV infection and low parental education are all associated with mortality because of diarrhoeal disease [9–17]. While it is clear that socio-economic and household factors play a role in diarrhoea incidence, it is less clear how these factors are related to diarrhoeal disease severity and mortality [2, 13, 18, 19]. Factors protective against diarrhoea incidence as well as mortality include exclusive breastfeeding [10, 14, 20–23], rotavirus vaccination [24, 25] the use of ORS, vitamin A and zinc supplementation [26–31]. An in-hospital child mortality audit tool used in 61% of South African hospitals, the Child Health Problem Identification Programme (CHIP), reported that 14% of deaths in the Western Cape during 2012/2013 were related to diarrhoea. The key identified avoidable factors as assessed by the treating medical team included caregiver delay in seeking healthcare, lack of caregiver recognition of disease severity and failure to provide adequate quality and quantity of food [5]. Worcester Provincial Hospital (WPH) is a secondary-level hospital located in the rural Cape Winelands district of the Western Cape Province of South Africa [32]. In rural areas, accessing healthcare services may be more difficult than in urban areas because of longer distances between healthcare facilities and limited availability of public or emergency transport, leading to later presentation for acute problems [33]. Anecdotally, it has been observed in this setting that healthcare providers are often under the impression that diarrhoea-associated severe dehydration or its complications could have been prevented by earlier presentation of the child or earlier referral from the primary to the secondary level of care. As such, we aimed to identify factors associated with severe dehydration or death because of acute diarrhoea (AD) in children admitted to WPH, with the primary objective of determining whether the time to initial presentation to a healthcare facility after onset of AD was associated with severe dehydration or death. Secondary objectives were to determine whether healthcare system, infant, maternal/caregiver or socio-economic factors were associated with severe dehydration or death in this rural context. METHODS A prospective cohort study was conducted at WPH from February to May 2014. Children aged 3 months to 5 years admitted with AD (defined as the passage of unusually loose or fluid stools more frequent than normal for a period not exceeding 14 days [34]) on 48 predetermined randomly selected days were eligible for enrolment. Demographic information, caregiver, infant, socio-economic and healthcare-related risk factors for AD and severe dehydration were collected through a structured interview with the parent/caregiver in the language of their choice on or shortly after admission of the child. No additional study investigations were conducted. The primary outcome was severe dehydration or death because of AD on or during admission. Severe dehydration was defined according to the World Health Organization (WHO) Integrated Management of Childhood Illness (IMCI) guidelines as the presence of two or more of the following signs: lethargy or unconscious state, sunken eyes, not being able to drink or drinking poorly and slow return of the skin pinch [35]. The primary determinant was ‘delay in seeking health care’, defined as 12 h or more since time of onset of AD and initial presentation to any healthcare facility as reported by the mother or caregiver. Basic descriptive statistics were calculated, including frequencies for categorical variables and measures of central tendency and variation for continuous variables. Time to presentation was compared as a categorical variable (delayed presentation vs. no presentation) as well as by Kaplan–Meier analysis and log-rank test. Statistical analysis was conducted in R version 2.13.1 (the R Foundation for Statistical Computing, Vienna, Austria). The study was approved by the Human Research Ethics Committee of Stellenbosch University (S14/01/002) and the Western Cape Government Health Impact Assessment Committee (RP016/2014). RESULTS A total of 298 cases of diarrhoeal disease were admitted to WPH during the study period. In total, 111 children with AD were eligible for enrolment, and 104 (94%) parents/caregivers consented to participate (Fig. 1). Fig. 1. View largeDownload slide Participant enrolment and distribution. Fig. 1. View largeDownload slide Participant enrolment and distribution. The median [interquartile range (IQR)] time to presentation after onset of diarrhoea symptoms for the total cohort was 20 (9–42) h. Total 68% (71 of 104) of participants had a delay of >12 h in seeking healthcare, 52% (54 of 104) experienced severe dehydration and there were no deaths (Table 1). Severe dehydration tended to occur more often in children without a delay compared with those with a delay in seeking healthcare (58 vs. 49%, p = 0.56). Children with severe dehydration presented earlier following onset of symptoms compared with children without severe dehydration [median (IQR) 17 (8–36) vs. 23 (11–52) h]. Overall, children with severe dehydration presented sooner than children without severe dehydration (log-rank test p =0.058) (Fig. 2). Table 1 Healthcare characteristics of children with diarrhoeal disease Variable  Total (N = 104)  With severe dehydration (N = 54)  Without severe dehydration (N = 50)  p-value  Delay in seeking healthcare  71 (68)  35 (65)  36 (72)  0.56  Time to presentation (hours)  20 (9–42)  17 (8–36)  23 (11–52)  0.18  Type of healthcare facility first attended        0.64   Local public hospital  58 (56)  28 (52)  30 (60)     Local public clinic  27 (26)  14 (26)  13 (26)     Private doctor  10 (10)  7 (13)  3 (6)     Pharmacy  9 (9)  5 (9)  4 (8)    Number of healthcare visits before presenting to WPH        0.82   Nil  53 (51)  27 (50)  26 (52)     One  36 (35)  20 (37)  16 (32)     Two or more  15 (14)  7 (13)  8 (16)    Variable  Total (N = 104)  With severe dehydration (N = 54)  Without severe dehydration (N = 50)  p-value  Delay in seeking healthcare  71 (68)  35 (65)  36 (72)  0.56  Time to presentation (hours)  20 (9–42)  17 (8–36)  23 (11–52)  0.18  Type of healthcare facility first attended        0.64   Local public hospital  58 (56)  28 (52)  30 (60)     Local public clinic  27 (26)  14 (26)  13 (26)     Private doctor  10 (10)  7 (13)  3 (6)     Pharmacy  9 (9)  5 (9)  4 (8)    Number of healthcare visits before presenting to WPH        0.82   Nil  53 (51)  27 (50)  26 (52)     One  36 (35)  20 (37)  16 (32)     Two or more  15 (14)  7 (13)  8 (16)    Notes: Numeric variables as median (IQR); categorical variables as number (%). Table 1 Healthcare characteristics of children with diarrhoeal disease Variable  Total (N = 104)  With severe dehydration (N = 54)  Without severe dehydration (N = 50)  p-value  Delay in seeking healthcare  71 (68)  35 (65)  36 (72)  0.56  Time to presentation (hours)  20 (9–42)  17 (8–36)  23 (11–52)  0.18  Type of healthcare facility first attended        0.64   Local public hospital  58 (56)  28 (52)  30 (60)     Local public clinic  27 (26)  14 (26)  13 (26)     Private doctor  10 (10)  7 (13)  3 (6)     Pharmacy  9 (9)  5 (9)  4 (8)    Number of healthcare visits before presenting to WPH        0.82   Nil  53 (51)  27 (50)  26 (52)     One  36 (35)  20 (37)  16 (32)     Two or more  15 (14)  7 (13)  8 (16)    Variable  Total (N = 104)  With severe dehydration (N = 54)  Without severe dehydration (N = 50)  p-value  Delay in seeking healthcare  71 (68)  35 (65)  36 (72)  0.56  Time to presentation (hours)  20 (9–42)  17 (8–36)  23 (11–52)  0.18  Type of healthcare facility first attended        0.64   Local public hospital  58 (56)  28 (52)  30 (60)     Local public clinic  27 (26)  14 (26)  13 (26)     Private doctor  10 (10)  7 (13)  3 (6)     Pharmacy  9 (9)  5 (9)  4 (8)    Number of healthcare visits before presenting to WPH        0.82   Nil  53 (51)  27 (50)  26 (52)     One  36 (35)  20 (37)  16 (32)     Two or more  15 (14)  7 (13)  8 (16)    Notes: Numeric variables as median (IQR); categorical variables as number (%). Fig. 2. View largeDownload slide Kaplan–Meier curve comparing time to first presentation to a healthcare facility in those with and without severe dehydration. Fig. 2. View largeDownload slide Kaplan–Meier curve comparing time to first presentation to a healthcare facility in those with and without severe dehydration. Total 56% (58 of 104) of participants presented directly to their local hospital of which 19% (11 of 58) presented during normal clinic hours, thus bypassing the primary healthcare services. Total 14% (15 of 104) of participants sought care at a health facility on two or more occasions for their current diarrhoeal symptoms before presenting to WPH, with no difference between those with and without severe dehydration. The median (IQR) age for the cohort was 11 (7–15) months (Table 2). Children with severe dehydration tended to be younger than those without severe dehydration [median (IQR) 10 (7–14) vs. 12 (7–18) months, p = 0.16]. Total 21% (22 of 104) of children were known to be HIV-exposed, and all were confirmed to be HIV-uninfected at the time of admission. In children <18 months, 29% (26 of 90) were exclusively breastfed for the first 6 months of life and 21% (19 of 90) for a period <6 months. Severe dehydration was not associated with the feeding practice received directly before the onset of diarrhoea. Fewer children with severe dehydration received ORS solution before admission for the current episode of diarrhoea compared with those without severe dehydration [34 of 54 (63%) vs. 40 of 50 (80%)]. Total 11% (11 of 104) of children had severe acute malnutrition on admission with diarrhoea. Table 2 Characteristics of children with diarrhoeal disease Variable  Total (N = 104)  With severe dehydration (N = 54)  Without severe dehydration (N = 50)  p-value  Age in months  11 (7–15)  10 (7–14)  12 (7–18)  0.16  Male gender  56 (54)  31 (57)  25 (50)  0.57  HIV-exposed uninfected  22 (21)  8 (15)  14 (28)  0.07  At least one previous episode of diarrhoea  50 (48)  24 (44)  26 (52)  0.56  Feeding regimen at time of onset of diarrhoea        0.31   Exclusive milk feeds  7 (7)  5 (9)  2 (4)     Complimentary feeding  48 (46)  27 (50)  21 (42)     Family diet  49 (47)  22 (40)  27 (54)    Severe acute malnutrition  11 (11)  7 (13)  4 (8)  0.52  Rotavirus vaccine        0.99   Complete course  96 (92)  49 (90)  47 (94)     Incomplete course  7 (7)  2 (4)  3 (6)     Unknown  1 (1)  1 (2)  0    Vitamin A supplementation           Up to date  88 (85)  46 (85)  42 (84)  0.88  ORS administered  74 (71)  34 (63)  40 (80)  0.08  Number of children with at least one concurrent infection  56 (54)  25 (46)  31 (62)  0.15  Comorbidities (can be more than one per infant; N=59)           Lower respiratory tract infection  46 (80)  19 (70)  27 (84)     Urinary tract infection  11 (18)  6 (22)  5 (16)     Upper respiratory tract  1 (2)  1 (4)  0     Oral candidiasis  1 (2)  1 (4)  0    Prior antibiotic use  16 (15)  9 (17)  7 (14)  0.89  Variable  Total (N = 104)  With severe dehydration (N = 54)  Without severe dehydration (N = 50)  p-value  Age in months  11 (7–15)  10 (7–14)  12 (7–18)  0.16  Male gender  56 (54)  31 (57)  25 (50)  0.57  HIV-exposed uninfected  22 (21)  8 (15)  14 (28)  0.07  At least one previous episode of diarrhoea  50 (48)  24 (44)  26 (52)  0.56  Feeding regimen at time of onset of diarrhoea        0.31   Exclusive milk feeds  7 (7)  5 (9)  2 (4)     Complimentary feeding  48 (46)  27 (50)  21 (42)     Family diet  49 (47)  22 (40)  27 (54)    Severe acute malnutrition  11 (11)  7 (13)  4 (8)  0.52  Rotavirus vaccine        0.99   Complete course  96 (92)  49 (90)  47 (94)     Incomplete course  7 (7)  2 (4)  3 (6)     Unknown  1 (1)  1 (2)  0    Vitamin A supplementation           Up to date  88 (85)  46 (85)  42 (84)  0.88  ORS administered  74 (71)  34 (63)  40 (80)  0.08  Number of children with at least one concurrent infection  56 (54)  25 (46)  31 (62)  0.15  Comorbidities (can be more than one per infant; N=59)           Lower respiratory tract infection  46 (80)  19 (70)  27 (84)     Urinary tract infection  11 (18)  6 (22)  5 (16)     Upper respiratory tract  1 (2)  1 (4)  0     Oral candidiasis  1 (2)  1 (4)  0    Prior antibiotic use  16 (15)  9 (17)  7 (14)  0.89  Notes: Numeric variables as median (IQR); categorical variables as number (%). Table 2 Characteristics of children with diarrhoeal disease Variable  Total (N = 104)  With severe dehydration (N = 54)  Without severe dehydration (N = 50)  p-value  Age in months  11 (7–15)  10 (7–14)  12 (7–18)  0.16  Male gender  56 (54)  31 (57)  25 (50)  0.57  HIV-exposed uninfected  22 (21)  8 (15)  14 (28)  0.07  At least one previous episode of diarrhoea  50 (48)  24 (44)  26 (52)  0.56  Feeding regimen at time of onset of diarrhoea        0.31   Exclusive milk feeds  7 (7)  5 (9)  2 (4)     Complimentary feeding  48 (46)  27 (50)  21 (42)     Family diet  49 (47)  22 (40)  27 (54)    Severe acute malnutrition  11 (11)  7 (13)  4 (8)  0.52  Rotavirus vaccine        0.99   Complete course  96 (92)  49 (90)  47 (94)     Incomplete course  7 (7)  2 (4)  3 (6)     Unknown  1 (1)  1 (2)  0    Vitamin A supplementation           Up to date  88 (85)  46 (85)  42 (84)  0.88  ORS administered  74 (71)  34 (63)  40 (80)  0.08  Number of children with at least one concurrent infection  56 (54)  25 (46)  31 (62)  0.15  Comorbidities (can be more than one per infant; N=59)           Lower respiratory tract infection  46 (80)  19 (70)  27 (84)     Urinary tract infection  11 (18)  6 (22)  5 (16)     Upper respiratory tract  1 (2)  1 (4)  0     Oral candidiasis  1 (2)  1 (4)  0    Prior antibiotic use  16 (15)  9 (17)  7 (14)  0.89  Variable  Total (N = 104)  With severe dehydration (N = 54)  Without severe dehydration (N = 50)  p-value  Age in months  11 (7–15)  10 (7–14)  12 (7–18)  0.16  Male gender  56 (54)  31 (57)  25 (50)  0.57  HIV-exposed uninfected  22 (21)  8 (15)  14 (28)  0.07  At least one previous episode of diarrhoea  50 (48)  24 (44)  26 (52)  0.56  Feeding regimen at time of onset of diarrhoea        0.31   Exclusive milk feeds  7 (7)  5 (9)  2 (4)     Complimentary feeding  48 (46)  27 (50)  21 (42)     Family diet  49 (47)  22 (40)  27 (54)    Severe acute malnutrition  11 (11)  7 (13)  4 (8)  0.52  Rotavirus vaccine        0.99   Complete course  96 (92)  49 (90)  47 (94)     Incomplete course  7 (7)  2 (4)  3 (6)     Unknown  1 (1)  1 (2)  0    Vitamin A supplementation           Up to date  88 (85)  46 (85)  42 (84)  0.88  ORS administered  74 (71)  34 (63)  40 (80)  0.08  Number of children with at least one concurrent infection  56 (54)  25 (46)  31 (62)  0.15  Comorbidities (can be more than one per infant; N=59)           Lower respiratory tract infection  46 (80)  19 (70)  27 (84)     Urinary tract infection  11 (18)  6 (22)  5 (16)     Upper respiratory tract  1 (2)  1 (4)  0     Oral candidiasis  1 (2)  1 (4)  0    Prior antibiotic use  16 (15)  9 (17)  7 (14)  0.89  Notes: Numeric variables as median (IQR); categorical variables as number (%). Primary caregivers of children with severe dehydration were younger than those without severe dehydration [median (IQR) 24 (21–28) vs. 27 (23–30)] (Table 3). Total 86% (90 of 104) of primary caregivers did not complete secondary education, and only 70% (73 of 104) were employed. The type of housing, access to safe water sources, storage of water, sanitation and household occupants did not differ significantly between groups of children with and without severe dehydration (Table 3). Table 3 Caregiver and household characteristics of children with diarrhoeal disease Variable  Total (N=104)  With severe dehydration (N=54)  Without severe dehydration (N=50)  p-value  Primary caregiver age in years  25 (21–29)  24 (21–28)  27 (23–30)  0.07  Mother as primary caregiver  90 (86)  50 (93)  40 (80)  0.11  Primary caregiver level of education        0.17   Some formal education  90 (86)  45 (83)  45 (90)     Completed secondary education  12 (12)  9 (17)  3 (6)     Unknown/declined to answer  2 (2)  0  2 (4)    Primary caregiver employed  73 (70)  39 (72)  34 (68)  0.74  Day time caregiver        0.97   Mother  18 (17)  10 (19)  8 (16)     Other family member  29 (28)  14 (26)  15 (30)     Non-relative  13 (13)  6 (11)  7 (14)     Attends daycare  44 (42)  24 (44)  20 (40)    Meals provided at daycare (N=44)  23 (52)  16 (70)  7 (35)  0.02  Formal daycare institution (N=44)  6 (14)  3 (13)  3 (15)  0.99  Type of housing        0.50   Formal housing  60 (58)  31 (57)  29 (58)     Informal housing  44 (42)  23 (43)  21 (42)    Number of adults in dwelling  2 (2–3.25)  2 (2–3)  3 (2–4)  0.15  Number of children in dwelling  2 (1–3)  2 (1–3)  2 (1–3)  0.52  Source of drinking water        0.92   Municipal piped into dwelling  53 (51)  27 (50)  26 (52)     Municipal piped into yard  15 (14)  7 (13)  8 (16)     Community tap  35 (34)  19 (35)  16 (32)     Dam  1 (1)  1 (2)  0    Storage of household water (n=51)        0.73   Open container  10 (20)  6 (22)  4 (17)     Closed container  41 (80)  21 (78)  20 (83)    Storage of leftover food        0.54   Refrigerator  66 (63)  33 (61)  33 (66)     Outside  33 (32)  17 (31)  16 (32)     Unknown/declined to answer  5 (5)  4 (8)  1 (2)    Leftover food reheated before consumption  89 (85)  43 (80)  46 (92)  0.21  Feeding bottles cleaned with soap (n=82)  57 (70)  35 (74)  22 (63)  0.19  Sanitation facilities available        0.67   Flush toilet  92 (94)  46 (96)  46 (96)     Pit toilet  6 (6)  4 (4)  2 (4)     None  6 (6)  4 (7)  2 (4)    Household income  2000 (1200–3000)  2000 (1300–2800)  2100 (1160–3350)  0.72  Receiving SASSA child support grant  73 (70)  38 (70)  35 (70)  0.99  Exposed to household tobacco smoke  65 (63)  32 (60)  33 (66)  0.61  Variable  Total (N=104)  With severe dehydration (N=54)  Without severe dehydration (N=50)  p-value  Primary caregiver age in years  25 (21–29)  24 (21–28)  27 (23–30)  0.07  Mother as primary caregiver  90 (86)  50 (93)  40 (80)  0.11  Primary caregiver level of education        0.17   Some formal education  90 (86)  45 (83)  45 (90)     Completed secondary education  12 (12)  9 (17)  3 (6)     Unknown/declined to answer  2 (2)  0  2 (4)    Primary caregiver employed  73 (70)  39 (72)  34 (68)  0.74  Day time caregiver        0.97   Mother  18 (17)  10 (19)  8 (16)     Other family member  29 (28)  14 (26)  15 (30)     Non-relative  13 (13)  6 (11)  7 (14)     Attends daycare  44 (42)  24 (44)  20 (40)    Meals provided at daycare (N=44)  23 (52)  16 (70)  7 (35)  0.02  Formal daycare institution (N=44)  6 (14)  3 (13)  3 (15)  0.99  Type of housing        0.50   Formal housing  60 (58)  31 (57)  29 (58)     Informal housing  44 (42)  23 (43)  21 (42)    Number of adults in dwelling  2 (2–3.25)  2 (2–3)  3 (2–4)  0.15  Number of children in dwelling  2 (1–3)  2 (1–3)  2 (1–3)  0.52  Source of drinking water        0.92   Municipal piped into dwelling  53 (51)  27 (50)  26 (52)     Municipal piped into yard  15 (14)  7 (13)  8 (16)     Community tap  35 (34)  19 (35)  16 (32)     Dam  1 (1)  1 (2)  0    Storage of household water (n=51)        0.73   Open container  10 (20)  6 (22)  4 (17)     Closed container  41 (80)  21 (78)  20 (83)    Storage of leftover food        0.54   Refrigerator  66 (63)  33 (61)  33 (66)     Outside  33 (32)  17 (31)  16 (32)     Unknown/declined to answer  5 (5)  4 (8)  1 (2)    Leftover food reheated before consumption  89 (85)  43 (80)  46 (92)  0.21  Feeding bottles cleaned with soap (n=82)  57 (70)  35 (74)  22 (63)  0.19  Sanitation facilities available        0.67   Flush toilet  92 (94)  46 (96)  46 (96)     Pit toilet  6 (6)  4 (4)  2 (4)     None  6 (6)  4 (7)  2 (4)    Household income  2000 (1200–3000)  2000 (1300–2800)  2100 (1160–3350)  0.72  Receiving SASSA child support grant  73 (70)  38 (70)  35 (70)  0.99  Exposed to household tobacco smoke  65 (63)  32 (60)  33 (66)  0.61  Notes: SASSA = South African Social Security Agency. Numeric variables as median (IQR); categorical variables as number (%). Table 3 Caregiver and household characteristics of children with diarrhoeal disease Variable  Total (N=104)  With severe dehydration (N=54)  Without severe dehydration (N=50)  p-value  Primary caregiver age in years  25 (21–29)  24 (21–28)  27 (23–30)  0.07  Mother as primary caregiver  90 (86)  50 (93)  40 (80)  0.11  Primary caregiver level of education        0.17   Some formal education  90 (86)  45 (83)  45 (90)     Completed secondary education  12 (12)  9 (17)  3 (6)     Unknown/declined to answer  2 (2)  0  2 (4)    Primary caregiver employed  73 (70)  39 (72)  34 (68)  0.74  Day time caregiver        0.97   Mother  18 (17)  10 (19)  8 (16)     Other family member  29 (28)  14 (26)  15 (30)     Non-relative  13 (13)  6 (11)  7 (14)     Attends daycare  44 (42)  24 (44)  20 (40)    Meals provided at daycare (N=44)  23 (52)  16 (70)  7 (35)  0.02  Formal daycare institution (N=44)  6 (14)  3 (13)  3 (15)  0.99  Type of housing        0.50   Formal housing  60 (58)  31 (57)  29 (58)     Informal housing  44 (42)  23 (43)  21 (42)    Number of adults in dwelling  2 (2–3.25)  2 (2–3)  3 (2–4)  0.15  Number of children in dwelling  2 (1–3)  2 (1–3)  2 (1–3)  0.52  Source of drinking water        0.92   Municipal piped into dwelling  53 (51)  27 (50)  26 (52)     Municipal piped into yard  15 (14)  7 (13)  8 (16)     Community tap  35 (34)  19 (35)  16 (32)     Dam  1 (1)  1 (2)  0    Storage of household water (n=51)        0.73   Open container  10 (20)  6 (22)  4 (17)     Closed container  41 (80)  21 (78)  20 (83)    Storage of leftover food        0.54   Refrigerator  66 (63)  33 (61)  33 (66)     Outside  33 (32)  17 (31)  16 (32)     Unknown/declined to answer  5 (5)  4 (8)  1 (2)    Leftover food reheated before consumption  89 (85)  43 (80)  46 (92)  0.21  Feeding bottles cleaned with soap (n=82)  57 (70)  35 (74)  22 (63)  0.19  Sanitation facilities available        0.67   Flush toilet  92 (94)  46 (96)  46 (96)     Pit toilet  6 (6)  4 (4)  2 (4)     None  6 (6)  4 (7)  2 (4)    Household income  2000 (1200–3000)  2000 (1300–2800)  2100 (1160–3350)  0.72  Receiving SASSA child support grant  73 (70)  38 (70)  35 (70)  0.99  Exposed to household tobacco smoke  65 (63)  32 (60)  33 (66)  0.61  Variable  Total (N=104)  With severe dehydration (N=54)  Without severe dehydration (N=50)  p-value  Primary caregiver age in years  25 (21–29)  24 (21–28)  27 (23–30)  0.07  Mother as primary caregiver  90 (86)  50 (93)  40 (80)  0.11  Primary caregiver level of education        0.17   Some formal education  90 (86)  45 (83)  45 (90)     Completed secondary education  12 (12)  9 (17)  3 (6)     Unknown/declined to answer  2 (2)  0  2 (4)    Primary caregiver employed  73 (70)  39 (72)  34 (68)  0.74  Day time caregiver        0.97   Mother  18 (17)  10 (19)  8 (16)     Other family member  29 (28)  14 (26)  15 (30)     Non-relative  13 (13)  6 (11)  7 (14)     Attends daycare  44 (42)  24 (44)  20 (40)    Meals provided at daycare (N=44)  23 (52)  16 (70)  7 (35)  0.02  Formal daycare institution (N=44)  6 (14)  3 (13)  3 (15)  0.99  Type of housing        0.50   Formal housing  60 (58)  31 (57)  29 (58)     Informal housing  44 (42)  23 (43)  21 (42)    Number of adults in dwelling  2 (2–3.25)  2 (2–3)  3 (2–4)  0.15  Number of children in dwelling  2 (1–3)  2 (1–3)  2 (1–3)  0.52  Source of drinking water        0.92   Municipal piped into dwelling  53 (51)  27 (50)  26 (52)     Municipal piped into yard  15 (14)  7 (13)  8 (16)     Community tap  35 (34)  19 (35)  16 (32)     Dam  1 (1)  1 (2)  0    Storage of household water (n=51)        0.73   Open container  10 (20)  6 (22)  4 (17)     Closed container  41 (80)  21 (78)  20 (83)    Storage of leftover food        0.54   Refrigerator  66 (63)  33 (61)  33 (66)     Outside  33 (32)  17 (31)  16 (32)     Unknown/declined to answer  5 (5)  4 (8)  1 (2)    Leftover food reheated before consumption  89 (85)  43 (80)  46 (92)  0.21  Feeding bottles cleaned with soap (n=82)  57 (70)  35 (74)  22 (63)  0.19  Sanitation facilities available        0.67   Flush toilet  92 (94)  46 (96)  46 (96)     Pit toilet  6 (6)  4 (4)  2 (4)     None  6 (6)  4 (7)  2 (4)    Household income  2000 (1200–3000)  2000 (1300–2800)  2100 (1160–3350)  0.72  Receiving SASSA child support grant  73 (70)  38 (70)  35 (70)  0.99  Exposed to household tobacco smoke  65 (63)  32 (60)  33 (66)  0.61  Notes: SASSA = South African Social Security Agency. Numeric variables as median (IQR); categorical variables as number (%). DISCUSSION In this rural setting, children with severe dehydration presented more rapidly to a healthcare service than those without severe dehydration. In keeping with what is known about risks for diarrhoea-associated morbidity and mortality, in this cohort, older maternal age, older infant age and the use of ORS tended to be protective against severe dehydrating diarrhoea [26, 27, 30, 36–38]. In this generally low socio-economic rural community, though, there was no association between socio-economic factors and severe dehydrating diarrhoea. Children with severe dehydration presented a median of 6 h earlier to a healthcare facility than those without severe dehydration. This is in contrast to the South African CHIP’s findings that delay in seeking healthcare was an important modifiable factor in preventing diarrhoea-associated mortality [5]. The CHIP methodology relies on the treating medical team subjectively assigning potentially modifiable factors for all in-hospital deaths occurring in the participating hospitals, whereas the current study objectively evaluated delay in presentation to a healthcare facility before the outcome of severe dehydration or death having been assigned. Additionally, contrary to previous studies, few children in this setting had multiple healthcare contacts before admission with severe dehydration [13, 39]. These findings suggest that both caregivers and healthcare workers are responding appropriately to diarrhoea symptoms and severity. Complete uptake of rotavirus vaccination (92%), vitamin A supplementation (85%) and use of ORS (71%) was high in this cohort. However, fewer children with severe dehydration had received ORS before admission, and this highlights a possible area for strengthened intervention encouraging earlier ORS use to further reduce diarrhoea morbidity and mortality. More than half of these children admitted with diarrhoea had a concurrent infection, almost 20% were HIV-exposed but uninfected, 11% had severe acute malnutrition and 63% were exposed to household tobacco smoke. This illustrates the high burden of infectious and nutritional morbidity and detrimental exposures experienced in this rural and impoverished community. Maternal age tended to be younger in those with severe dehydration, possibly representing a lack of awareness around interventions such as ORS administration and timely seeking of healthcare for management of diarrhoea. Unlike studies performed elsewhere, in the current study, caregiver employment was not associated with severe dehydration [12], and the caregiver level of education in this cohort was low, with only 12% having completed secondary-level education. In such a generally vulnerable community with little variability in the level of employment and education of caregivers, it is difficult to appreciate the role this might play in delay in seeking healthcare and severity of dehydration. To our knowledge, this is the first study in a rural South African setting objectively evaluating factors associated with severe dehydrating diarrhoea. Strengths of this study include the prospective design allowing more detailed socio-economic and household data collection than would ordinarily be available in routine clinical notes and with less recall bias. Clinical evaluation of participants was conducted by trained and skilled clinicians using the same WHO IMCI clinical criteria for classification of diarrhoea severity and standardized admission stationery limiting inter-observer variability and misclassification. The study is limited in that it was a hospital-based study without inclusion of milder diarrhoea episodes not requiring admission and was unable to measure out of hospital diarrhoea-associated mortality before admission or following discharge. CONCLUSION The findings of this study do not support the perception that caregiver delay in seeking healthcare for children with diarrhoea is a driver of severe dehydration in this setting. Instead, these findings support that younger child and maternal age, severe acute malnutrition and less ORS use are associated with dehydrating diarrhoea in the rural Western Cape, South Africa. The high level of ORS and rotavirus vaccination uptake is encouraging. In light of these findings, we recommend generation of awareness amongst child healthcare providers that delay in seeking healthcare may not be an important modifiable factor in preventing diarrhoeal mortality in this community. Rather, to further reduce diarrhoea-associated severe dehydration and its consequences, we recommend strengthening of programmes to encourage exclusive breastfeeding, ORS use at the community level and continued timely healthcare seeking for children with symptoms of AD disease. REFERENCES 1 UNICEF, WHO. Diarrhea: why Children are Still Dying and What can be Done? Geneva, Switzerland: WHO Press, 2009, 68. 2 Fischer Walker CL, Rudan I, Liu L, et al.   Global burden of childhood pneumonia and diarrhoea. Lancet  2013; 381: 1405– 16. Google Scholar CrossRef Search ADS PubMed  3 Zodpey SP, Deshpande SG, Ughade SN, et al.   A prediction model for moderate or severe dehydration in children with diarrhoea. J Diarrhoeal Dis Res  1999; 17: 10– 16. Google Scholar PubMed  4 Gyimah SO. Interaction effects of maternal education and household facilities on childhood diarrhea in Sub-Saharan Africa: the case of Ghana. J Health Popul Dev Ctries  2003: 1– 17. 5 Stephen C. (ed.). Saving Children 2012-2013 . Pretoria: MRC Unit for Maternal and Infant Health Care Strategies, 2016, 1– 114. 6 South Afican Medical Research Council. Western Cape Mortality Profile 2011 . Cape Town: South African Medical Research Council, 2014, 1– 88. 7 Zodpey SP, Deshpande SG, Ughade SN, et al.   Risk factors for development of dehydration in children aged under five who have acute watery diarrhoea: a case-control study. Public Health  1998; 112: 233– 6. Google Scholar PubMed  8 Rahman AE, Moinuddin M, Molla M, et al.   Childhood diarrhoeal deaths in seven low- and middle-income countries. Bull World Health Organ  2014; 92: 664– 71. Google Scholar CrossRef Search ADS PubMed  9 Yassin K. Morbidity and risk factors of diarrheal diseases among under-five children in rural Upper Egypt. J Trop Pediatr  2000; 46: 282– 7. Google Scholar CrossRef Search ADS PubMed  10 Yilgwan C, Okolo S. Prevalence of diarrhea disease and risk factors in Jos University Teaching Hospital, Nigeria. Ann Afr Med  2012; 11: 217. Google Scholar CrossRef Search ADS PubMed  11 Maranhão HS, Medeiros MCC, Scaletsky ICA, et al.   The epidemiological and clinical characteristics and nutritional development of infants with acute diarrhoea, in north-eastern Brazil. Ann Trop Med Parasitol  2008; 102: 357– 65. Google Scholar CrossRef Search ADS PubMed  12 Ahmed FU, Karim E. Children at risk of developing dehydration from diarrhoea: a case-control study. J Trop Pediatr  2002; 48: 259– 63. Google Scholar CrossRef Search ADS PubMed  13 Kahabuka C, Kvåle G, Hinderaker S. Factors associated with severe disease from malaria, pneumonia and diarrhea among children in rural Tanzania – a hospital-based cross-sectional study. BMC Infect Dis  2012; 12: 219. Google Scholar CrossRef Search ADS PubMed  14 Fuchs SC, Victora CG, Martines J. Case-control study of risk of dehydrating diarrhoea in infants in vulnerable period after full weaning. BMJ  1996; 313: 391– 4. Google Scholar CrossRef Search ADS PubMed  15 Kosek M, Bern C, Guerrant RL. The global burden of diarrhoeal disease, as estimated from studies published between 1992 and 2000. Bull World Health Organ  2003; 81: 197– 204. Google Scholar PubMed  16 Johnson S, Hendson W, Crewe-Brown H, et al.   Effect of human immunodeficiency virus infection on episodes of diarrhea among children in South Africa. Pediatr Infect Dis J  2000; 19: 972– 9. Google Scholar CrossRef Search ADS PubMed  17 Cook ML, Nel E, Cotton MF. Pre-hospital management and risk factors in children with acute diarrhoea admitted to a short-stay ward in an urban South African hospital with a high HIV burden. South African J Child Heal  2013; 7: 84–87. 18 Woldemicael G. Diarrhoeal morbidity among young children in Eritrea: environmental and socioeconomic determinants. J Health Popul Nutr  2001; 19: 83– 90. Google Scholar PubMed  19 Etiler N, Velipasaoglu S, Aktekin M. Risk factors for overall and persistent diarrhoea in infancy in Antalya, Turkey: a cohort study. Public Health  2004; 118: 62– 9. Google Scholar CrossRef Search ADS PubMed  20 Lamberti LM, Fischer Walker CL, Noiman A, et al.   Breastfeeding and the risk for diarrhea morbidity and mortality. BMC Public Health  2011; 11(Suppl 3): S15. Google Scholar CrossRef Search ADS PubMed  21 Panda S, Deb AK, Chawla-Sarkar M, et al.   Factors associated with diarrhoea in young children and incidence of symptomatic rotavirus infection in rural West Bengal, India. Epidemiol Infect  2014; 142: 1848– 58. Google Scholar CrossRef Search ADS PubMed  22 Cama RI, Parashar UD, Taylor DN, et al.   Enteropathogens and other factors associated with severe disease in children with acute watery diarrhea in Lima, Peru. J Infect Dis  1999; 179: 1139– 44. Google Scholar CrossRef Search ADS PubMed  23 Escobar AL, Coimbra CE, Welch JR, et al.   Diarrhea and health inequity among Indigenous children in Brazil: results from the First National Survey of Indigenous People’s Health and Nutrition. BMC Public Health  2015; 15: 1– 11. Google Scholar CrossRef Search ADS PubMed  24 Groome MJ, Page N, Cortese MM, et al.   Effectiveness of monovalent human rotavirus vaccine against admission to hospital for acute rotavirus diarrhoea in South African children: a case-control study. Lancet Infect Dis  2014; 14: 1096– 104. Google Scholar CrossRef Search ADS PubMed  25 Madhi SA, Cunliffe NA, Steele D, et al.   Effect of human rotavirus vaccine on severe diarrhea in African infants. N Engl J Med  2010; 362: 289– 98. Google Scholar CrossRef Search ADS PubMed  26 Victora CG, Bryce J, Fontaine O, Monasch R. Reducing deaths from diarrhoea through oral rehydration therapy. Bull World Health Organ  2000; 78: 1246– 55. Google Scholar PubMed  27 Black RE, Allen LH, Bhutta ZA, et al.   Maternal and child undernutrition: global and regional exposures and health consequences. Lancet  2008; 243– 60. 28 Fawzi WW, Mbise R, Spiegelman D, et al.   Vitamin A supplements and diarrheal and respiratory tract infections among children in Dar es Salaam, Tanzania. J Pediatr  2000; 137: 660– 7. Google Scholar CrossRef Search ADS PubMed  29 Al-Sonboli N, Gurgel RQ, Shenkin A, et al.   Zinc supplementation in Brazilian children with acute diarrhoea. Ann Trop Paediatr  2003; 23: 3– 8. Google Scholar CrossRef Search ADS PubMed  30 Lukacik M, Thomas RL, Aranda JV. A meta-analysis of the effects of oral zinc in the treatment of acute and persistent diarrhea. Pediatrics  2008; 121: 326– 36. Google Scholar CrossRef Search ADS PubMed  31 Sazawal S, Black RE, Bhan MK, et al.   Zinc supplementation in young children with acute diarrhea in India. N Engl J Med  1995; 333: 839– 44. Google Scholar CrossRef Search ADS PubMed  32 Western Cape Provincial Treasury. Regional Development Profile. City of Cape Town Working Paper. Cape Town, South Africa: Local Government Budget Office, 2012. 33 Visser M, Ferrer S. Farm Workers' Living and Working Conditions in South Africa : Key Trends, Emergent Issues, and Underlying and Structural Problems . Pretoria, South Africa: The Pretoria Office of the International Labour Organisation, 2015. 34 Kibel M, Saloojee H, Westwood T. Child Health For All. 4th edn. Cape Town: Oxford, 2007. 35 World Health Organization, UNICEF. Integrated Management of Childhood Illness Chart Booklet . 1st edn. Geneva: World Health Organization, 2004. 36 WHO. The Treatment of Diarrhea, a Manual for Physicians and Other Senior Health Workers. Geneva, Switzerland: WHO Press, 2005, 1– 44. 37 Molbak K. The epidemiology of diarrheal diseases in early childhood: a review of community studies in Guinea-Bassau. Dan Med Bull  2000; 47: 340– 58. Google Scholar PubMed  38 Levine AC, Munyaneza RM, Glavis-Bloom J, et al.   Prediction of severe disease in children with diarrhea in a resource-limited setting. PLoS One  2013; 8: 1– 11. Google Scholar CrossRef Search ADS   39 O’Reilly CE, Jaron P, Ochieng B, et al.   Risk factors for death among children less than 5 years old hospitalized with diarrhea in rural Western Kenya, 2005-2007: a cohort study. PLoS Med  2012; 9: 2005– 7. © The Author(s) [2018]. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Tropical Pediatrics Oxford University Press

Factors Associated with Severe Dehydrating Diarrhoea in the Rural Western Cape, South Africa

Loading next page...
 
/lp/ou_press/factors-associated-with-severe-dehydrating-diarrhoea-in-the-rural-ygMhv5c1Fc
Publisher
Oxford University Press
Copyright
© The Author(s) [2018]. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
ISSN
0142-6338
eISSN
1465-3664
D.O.I.
10.1093/tropej/fmy002
Publisher site
See Article on Publisher Site

Abstract

Abstract Background Acute diarrhoea (AD) remains a leading cause of childhood death. We evaluated whether delayed healthcare seeking was associated with severe dehydration in rural South Africa. Methods In a prospective cohort study of children with AD admitted to a secondary-level hospital, data were collected through structured caregiver interviews and hospital record review. The primary outcome was severe dehydration/death, and the primary determinant was delay >12 h between AD symptom onset and healthcare facility presentation. Results Total 68% (71 of 104) of children experienced a delay, and 51% (54 of 104) had severe dehydration with no in-hospital deaths. There was no difference in children with (35 of 71) or without (19 of 33) delay for severe dehydration. Mothers of children with severe dehydration tended to be younger [median (interquartile range) 24 (21–28) vs. 27 (23–30) years, p = 0.07] and used less oral rehydration solution (63 vs. 80%, p = 0.08). Conclusion Delay of >12 h in seeking healthcare for AD was not associated with severe dehydration. diarrhoea, rural health, dehydration, South Africa INTRODUCTION Globally, despite little change in diarrhoea incidence, diarrhoea-associated mortality in children aged <5 years has declined over the past two decades because of improved access to care and interventions, including oral rehydration salts (ORS) and zinc supplementation [1]. However, in South Africa, diarrhoea is still the second leading cause of death in children aged <5 years, and in the Western Cape Province of South Africa, diarrhoea accounts for 11% of under-5 deaths [2–6]. Diarrhoea-associated mortality in childhood most often results directly from dehydration and its consequences; however, little is known about community or pre-hospital factors associated with the development or prevention of diarrhoea-associated dehydration [7, 8]. Younger age, underlying conditions such as malnutrition and HIV infection and low parental education are all associated with mortality because of diarrhoeal disease [9–17]. While it is clear that socio-economic and household factors play a role in diarrhoea incidence, it is less clear how these factors are related to diarrhoeal disease severity and mortality [2, 13, 18, 19]. Factors protective against diarrhoea incidence as well as mortality include exclusive breastfeeding [10, 14, 20–23], rotavirus vaccination [24, 25] the use of ORS, vitamin A and zinc supplementation [26–31]. An in-hospital child mortality audit tool used in 61% of South African hospitals, the Child Health Problem Identification Programme (CHIP), reported that 14% of deaths in the Western Cape during 2012/2013 were related to diarrhoea. The key identified avoidable factors as assessed by the treating medical team included caregiver delay in seeking healthcare, lack of caregiver recognition of disease severity and failure to provide adequate quality and quantity of food [5]. Worcester Provincial Hospital (WPH) is a secondary-level hospital located in the rural Cape Winelands district of the Western Cape Province of South Africa [32]. In rural areas, accessing healthcare services may be more difficult than in urban areas because of longer distances between healthcare facilities and limited availability of public or emergency transport, leading to later presentation for acute problems [33]. Anecdotally, it has been observed in this setting that healthcare providers are often under the impression that diarrhoea-associated severe dehydration or its complications could have been prevented by earlier presentation of the child or earlier referral from the primary to the secondary level of care. As such, we aimed to identify factors associated with severe dehydration or death because of acute diarrhoea (AD) in children admitted to WPH, with the primary objective of determining whether the time to initial presentation to a healthcare facility after onset of AD was associated with severe dehydration or death. Secondary objectives were to determine whether healthcare system, infant, maternal/caregiver or socio-economic factors were associated with severe dehydration or death in this rural context. METHODS A prospective cohort study was conducted at WPH from February to May 2014. Children aged 3 months to 5 years admitted with AD (defined as the passage of unusually loose or fluid stools more frequent than normal for a period not exceeding 14 days [34]) on 48 predetermined randomly selected days were eligible for enrolment. Demographic information, caregiver, infant, socio-economic and healthcare-related risk factors for AD and severe dehydration were collected through a structured interview with the parent/caregiver in the language of their choice on or shortly after admission of the child. No additional study investigations were conducted. The primary outcome was severe dehydration or death because of AD on or during admission. Severe dehydration was defined according to the World Health Organization (WHO) Integrated Management of Childhood Illness (IMCI) guidelines as the presence of two or more of the following signs: lethargy or unconscious state, sunken eyes, not being able to drink or drinking poorly and slow return of the skin pinch [35]. The primary determinant was ‘delay in seeking health care’, defined as 12 h or more since time of onset of AD and initial presentation to any healthcare facility as reported by the mother or caregiver. Basic descriptive statistics were calculated, including frequencies for categorical variables and measures of central tendency and variation for continuous variables. Time to presentation was compared as a categorical variable (delayed presentation vs. no presentation) as well as by Kaplan–Meier analysis and log-rank test. Statistical analysis was conducted in R version 2.13.1 (the R Foundation for Statistical Computing, Vienna, Austria). The study was approved by the Human Research Ethics Committee of Stellenbosch University (S14/01/002) and the Western Cape Government Health Impact Assessment Committee (RP016/2014). RESULTS A total of 298 cases of diarrhoeal disease were admitted to WPH during the study period. In total, 111 children with AD were eligible for enrolment, and 104 (94%) parents/caregivers consented to participate (Fig. 1). Fig. 1. View largeDownload slide Participant enrolment and distribution. Fig. 1. View largeDownload slide Participant enrolment and distribution. The median [interquartile range (IQR)] time to presentation after onset of diarrhoea symptoms for the total cohort was 20 (9–42) h. Total 68% (71 of 104) of participants had a delay of >12 h in seeking healthcare, 52% (54 of 104) experienced severe dehydration and there were no deaths (Table 1). Severe dehydration tended to occur more often in children without a delay compared with those with a delay in seeking healthcare (58 vs. 49%, p = 0.56). Children with severe dehydration presented earlier following onset of symptoms compared with children without severe dehydration [median (IQR) 17 (8–36) vs. 23 (11–52) h]. Overall, children with severe dehydration presented sooner than children without severe dehydration (log-rank test p =0.058) (Fig. 2). Table 1 Healthcare characteristics of children with diarrhoeal disease Variable  Total (N = 104)  With severe dehydration (N = 54)  Without severe dehydration (N = 50)  p-value  Delay in seeking healthcare  71 (68)  35 (65)  36 (72)  0.56  Time to presentation (hours)  20 (9–42)  17 (8–36)  23 (11–52)  0.18  Type of healthcare facility first attended        0.64   Local public hospital  58 (56)  28 (52)  30 (60)     Local public clinic  27 (26)  14 (26)  13 (26)     Private doctor  10 (10)  7 (13)  3 (6)     Pharmacy  9 (9)  5 (9)  4 (8)    Number of healthcare visits before presenting to WPH        0.82   Nil  53 (51)  27 (50)  26 (52)     One  36 (35)  20 (37)  16 (32)     Two or more  15 (14)  7 (13)  8 (16)    Variable  Total (N = 104)  With severe dehydration (N = 54)  Without severe dehydration (N = 50)  p-value  Delay in seeking healthcare  71 (68)  35 (65)  36 (72)  0.56  Time to presentation (hours)  20 (9–42)  17 (8–36)  23 (11–52)  0.18  Type of healthcare facility first attended        0.64   Local public hospital  58 (56)  28 (52)  30 (60)     Local public clinic  27 (26)  14 (26)  13 (26)     Private doctor  10 (10)  7 (13)  3 (6)     Pharmacy  9 (9)  5 (9)  4 (8)    Number of healthcare visits before presenting to WPH        0.82   Nil  53 (51)  27 (50)  26 (52)     One  36 (35)  20 (37)  16 (32)     Two or more  15 (14)  7 (13)  8 (16)    Notes: Numeric variables as median (IQR); categorical variables as number (%). Table 1 Healthcare characteristics of children with diarrhoeal disease Variable  Total (N = 104)  With severe dehydration (N = 54)  Without severe dehydration (N = 50)  p-value  Delay in seeking healthcare  71 (68)  35 (65)  36 (72)  0.56  Time to presentation (hours)  20 (9–42)  17 (8–36)  23 (11–52)  0.18  Type of healthcare facility first attended        0.64   Local public hospital  58 (56)  28 (52)  30 (60)     Local public clinic  27 (26)  14 (26)  13 (26)     Private doctor  10 (10)  7 (13)  3 (6)     Pharmacy  9 (9)  5 (9)  4 (8)    Number of healthcare visits before presenting to WPH        0.82   Nil  53 (51)  27 (50)  26 (52)     One  36 (35)  20 (37)  16 (32)     Two or more  15 (14)  7 (13)  8 (16)    Variable  Total (N = 104)  With severe dehydration (N = 54)  Without severe dehydration (N = 50)  p-value  Delay in seeking healthcare  71 (68)  35 (65)  36 (72)  0.56  Time to presentation (hours)  20 (9–42)  17 (8–36)  23 (11–52)  0.18  Type of healthcare facility first attended        0.64   Local public hospital  58 (56)  28 (52)  30 (60)     Local public clinic  27 (26)  14 (26)  13 (26)     Private doctor  10 (10)  7 (13)  3 (6)     Pharmacy  9 (9)  5 (9)  4 (8)    Number of healthcare visits before presenting to WPH        0.82   Nil  53 (51)  27 (50)  26 (52)     One  36 (35)  20 (37)  16 (32)     Two or more  15 (14)  7 (13)  8 (16)    Notes: Numeric variables as median (IQR); categorical variables as number (%). Fig. 2. View largeDownload slide Kaplan–Meier curve comparing time to first presentation to a healthcare facility in those with and without severe dehydration. Fig. 2. View largeDownload slide Kaplan–Meier curve comparing time to first presentation to a healthcare facility in those with and without severe dehydration. Total 56% (58 of 104) of participants presented directly to their local hospital of which 19% (11 of 58) presented during normal clinic hours, thus bypassing the primary healthcare services. Total 14% (15 of 104) of participants sought care at a health facility on two or more occasions for their current diarrhoeal symptoms before presenting to WPH, with no difference between those with and without severe dehydration. The median (IQR) age for the cohort was 11 (7–15) months (Table 2). Children with severe dehydration tended to be younger than those without severe dehydration [median (IQR) 10 (7–14) vs. 12 (7–18) months, p = 0.16]. Total 21% (22 of 104) of children were known to be HIV-exposed, and all were confirmed to be HIV-uninfected at the time of admission. In children <18 months, 29% (26 of 90) were exclusively breastfed for the first 6 months of life and 21% (19 of 90) for a period <6 months. Severe dehydration was not associated with the feeding practice received directly before the onset of diarrhoea. Fewer children with severe dehydration received ORS solution before admission for the current episode of diarrhoea compared with those without severe dehydration [34 of 54 (63%) vs. 40 of 50 (80%)]. Total 11% (11 of 104) of children had severe acute malnutrition on admission with diarrhoea. Table 2 Characteristics of children with diarrhoeal disease Variable  Total (N = 104)  With severe dehydration (N = 54)  Without severe dehydration (N = 50)  p-value  Age in months  11 (7–15)  10 (7–14)  12 (7–18)  0.16  Male gender  56 (54)  31 (57)  25 (50)  0.57  HIV-exposed uninfected  22 (21)  8 (15)  14 (28)  0.07  At least one previous episode of diarrhoea  50 (48)  24 (44)  26 (52)  0.56  Feeding regimen at time of onset of diarrhoea        0.31   Exclusive milk feeds  7 (7)  5 (9)  2 (4)     Complimentary feeding  48 (46)  27 (50)  21 (42)     Family diet  49 (47)  22 (40)  27 (54)    Severe acute malnutrition  11 (11)  7 (13)  4 (8)  0.52  Rotavirus vaccine        0.99   Complete course  96 (92)  49 (90)  47 (94)     Incomplete course  7 (7)  2 (4)  3 (6)     Unknown  1 (1)  1 (2)  0    Vitamin A supplementation           Up to date  88 (85)  46 (85)  42 (84)  0.88  ORS administered  74 (71)  34 (63)  40 (80)  0.08  Number of children with at least one concurrent infection  56 (54)  25 (46)  31 (62)  0.15  Comorbidities (can be more than one per infant; N=59)           Lower respiratory tract infection  46 (80)  19 (70)  27 (84)     Urinary tract infection  11 (18)  6 (22)  5 (16)     Upper respiratory tract  1 (2)  1 (4)  0     Oral candidiasis  1 (2)  1 (4)  0    Prior antibiotic use  16 (15)  9 (17)  7 (14)  0.89  Variable  Total (N = 104)  With severe dehydration (N = 54)  Without severe dehydration (N = 50)  p-value  Age in months  11 (7–15)  10 (7–14)  12 (7–18)  0.16  Male gender  56 (54)  31 (57)  25 (50)  0.57  HIV-exposed uninfected  22 (21)  8 (15)  14 (28)  0.07  At least one previous episode of diarrhoea  50 (48)  24 (44)  26 (52)  0.56  Feeding regimen at time of onset of diarrhoea        0.31   Exclusive milk feeds  7 (7)  5 (9)  2 (4)     Complimentary feeding  48 (46)  27 (50)  21 (42)     Family diet  49 (47)  22 (40)  27 (54)    Severe acute malnutrition  11 (11)  7 (13)  4 (8)  0.52  Rotavirus vaccine        0.99   Complete course  96 (92)  49 (90)  47 (94)     Incomplete course  7 (7)  2 (4)  3 (6)     Unknown  1 (1)  1 (2)  0    Vitamin A supplementation           Up to date  88 (85)  46 (85)  42 (84)  0.88  ORS administered  74 (71)  34 (63)  40 (80)  0.08  Number of children with at least one concurrent infection  56 (54)  25 (46)  31 (62)  0.15  Comorbidities (can be more than one per infant; N=59)           Lower respiratory tract infection  46 (80)  19 (70)  27 (84)     Urinary tract infection  11 (18)  6 (22)  5 (16)     Upper respiratory tract  1 (2)  1 (4)  0     Oral candidiasis  1 (2)  1 (4)  0    Prior antibiotic use  16 (15)  9 (17)  7 (14)  0.89  Notes: Numeric variables as median (IQR); categorical variables as number (%). Table 2 Characteristics of children with diarrhoeal disease Variable  Total (N = 104)  With severe dehydration (N = 54)  Without severe dehydration (N = 50)  p-value  Age in months  11 (7–15)  10 (7–14)  12 (7–18)  0.16  Male gender  56 (54)  31 (57)  25 (50)  0.57  HIV-exposed uninfected  22 (21)  8 (15)  14 (28)  0.07  At least one previous episode of diarrhoea  50 (48)  24 (44)  26 (52)  0.56  Feeding regimen at time of onset of diarrhoea        0.31   Exclusive milk feeds  7 (7)  5 (9)  2 (4)     Complimentary feeding  48 (46)  27 (50)  21 (42)     Family diet  49 (47)  22 (40)  27 (54)    Severe acute malnutrition  11 (11)  7 (13)  4 (8)  0.52  Rotavirus vaccine        0.99   Complete course  96 (92)  49 (90)  47 (94)     Incomplete course  7 (7)  2 (4)  3 (6)     Unknown  1 (1)  1 (2)  0    Vitamin A supplementation           Up to date  88 (85)  46 (85)  42 (84)  0.88  ORS administered  74 (71)  34 (63)  40 (80)  0.08  Number of children with at least one concurrent infection  56 (54)  25 (46)  31 (62)  0.15  Comorbidities (can be more than one per infant; N=59)           Lower respiratory tract infection  46 (80)  19 (70)  27 (84)     Urinary tract infection  11 (18)  6 (22)  5 (16)     Upper respiratory tract  1 (2)  1 (4)  0     Oral candidiasis  1 (2)  1 (4)  0    Prior antibiotic use  16 (15)  9 (17)  7 (14)  0.89  Variable  Total (N = 104)  With severe dehydration (N = 54)  Without severe dehydration (N = 50)  p-value  Age in months  11 (7–15)  10 (7–14)  12 (7–18)  0.16  Male gender  56 (54)  31 (57)  25 (50)  0.57  HIV-exposed uninfected  22 (21)  8 (15)  14 (28)  0.07  At least one previous episode of diarrhoea  50 (48)  24 (44)  26 (52)  0.56  Feeding regimen at time of onset of diarrhoea        0.31   Exclusive milk feeds  7 (7)  5 (9)  2 (4)     Complimentary feeding  48 (46)  27 (50)  21 (42)     Family diet  49 (47)  22 (40)  27 (54)    Severe acute malnutrition  11 (11)  7 (13)  4 (8)  0.52  Rotavirus vaccine        0.99   Complete course  96 (92)  49 (90)  47 (94)     Incomplete course  7 (7)  2 (4)  3 (6)     Unknown  1 (1)  1 (2)  0    Vitamin A supplementation           Up to date  88 (85)  46 (85)  42 (84)  0.88  ORS administered  74 (71)  34 (63)  40 (80)  0.08  Number of children with at least one concurrent infection  56 (54)  25 (46)  31 (62)  0.15  Comorbidities (can be more than one per infant; N=59)           Lower respiratory tract infection  46 (80)  19 (70)  27 (84)     Urinary tract infection  11 (18)  6 (22)  5 (16)     Upper respiratory tract  1 (2)  1 (4)  0     Oral candidiasis  1 (2)  1 (4)  0    Prior antibiotic use  16 (15)  9 (17)  7 (14)  0.89  Notes: Numeric variables as median (IQR); categorical variables as number (%). Primary caregivers of children with severe dehydration were younger than those without severe dehydration [median (IQR) 24 (21–28) vs. 27 (23–30)] (Table 3). Total 86% (90 of 104) of primary caregivers did not complete secondary education, and only 70% (73 of 104) were employed. The type of housing, access to safe water sources, storage of water, sanitation and household occupants did not differ significantly between groups of children with and without severe dehydration (Table 3). Table 3 Caregiver and household characteristics of children with diarrhoeal disease Variable  Total (N=104)  With severe dehydration (N=54)  Without severe dehydration (N=50)  p-value  Primary caregiver age in years  25 (21–29)  24 (21–28)  27 (23–30)  0.07  Mother as primary caregiver  90 (86)  50 (93)  40 (80)  0.11  Primary caregiver level of education        0.17   Some formal education  90 (86)  45 (83)  45 (90)     Completed secondary education  12 (12)  9 (17)  3 (6)     Unknown/declined to answer  2 (2)  0  2 (4)    Primary caregiver employed  73 (70)  39 (72)  34 (68)  0.74  Day time caregiver        0.97   Mother  18 (17)  10 (19)  8 (16)     Other family member  29 (28)  14 (26)  15 (30)     Non-relative  13 (13)  6 (11)  7 (14)     Attends daycare  44 (42)  24 (44)  20 (40)    Meals provided at daycare (N=44)  23 (52)  16 (70)  7 (35)  0.02  Formal daycare institution (N=44)  6 (14)  3 (13)  3 (15)  0.99  Type of housing        0.50   Formal housing  60 (58)  31 (57)  29 (58)     Informal housing  44 (42)  23 (43)  21 (42)    Number of adults in dwelling  2 (2–3.25)  2 (2–3)  3 (2–4)  0.15  Number of children in dwelling  2 (1–3)  2 (1–3)  2 (1–3)  0.52  Source of drinking water        0.92   Municipal piped into dwelling  53 (51)  27 (50)  26 (52)     Municipal piped into yard  15 (14)  7 (13)  8 (16)     Community tap  35 (34)  19 (35)  16 (32)     Dam  1 (1)  1 (2)  0    Storage of household water (n=51)        0.73   Open container  10 (20)  6 (22)  4 (17)     Closed container  41 (80)  21 (78)  20 (83)    Storage of leftover food        0.54   Refrigerator  66 (63)  33 (61)  33 (66)     Outside  33 (32)  17 (31)  16 (32)     Unknown/declined to answer  5 (5)  4 (8)  1 (2)    Leftover food reheated before consumption  89 (85)  43 (80)  46 (92)  0.21  Feeding bottles cleaned with soap (n=82)  57 (70)  35 (74)  22 (63)  0.19  Sanitation facilities available        0.67   Flush toilet  92 (94)  46 (96)  46 (96)     Pit toilet  6 (6)  4 (4)  2 (4)     None  6 (6)  4 (7)  2 (4)    Household income  2000 (1200–3000)  2000 (1300–2800)  2100 (1160–3350)  0.72  Receiving SASSA child support grant  73 (70)  38 (70)  35 (70)  0.99  Exposed to household tobacco smoke  65 (63)  32 (60)  33 (66)  0.61  Variable  Total (N=104)  With severe dehydration (N=54)  Without severe dehydration (N=50)  p-value  Primary caregiver age in years  25 (21–29)  24 (21–28)  27 (23–30)  0.07  Mother as primary caregiver  90 (86)  50 (93)  40 (80)  0.11  Primary caregiver level of education        0.17   Some formal education  90 (86)  45 (83)  45 (90)     Completed secondary education  12 (12)  9 (17)  3 (6)     Unknown/declined to answer  2 (2)  0  2 (4)    Primary caregiver employed  73 (70)  39 (72)  34 (68)  0.74  Day time caregiver        0.97   Mother  18 (17)  10 (19)  8 (16)     Other family member  29 (28)  14 (26)  15 (30)     Non-relative  13 (13)  6 (11)  7 (14)     Attends daycare  44 (42)  24 (44)  20 (40)    Meals provided at daycare (N=44)  23 (52)  16 (70)  7 (35)  0.02  Formal daycare institution (N=44)  6 (14)  3 (13)  3 (15)  0.99  Type of housing        0.50   Formal housing  60 (58)  31 (57)  29 (58)     Informal housing  44 (42)  23 (43)  21 (42)    Number of adults in dwelling  2 (2–3.25)  2 (2–3)  3 (2–4)  0.15  Number of children in dwelling  2 (1–3)  2 (1–3)  2 (1–3)  0.52  Source of drinking water        0.92   Municipal piped into dwelling  53 (51)  27 (50)  26 (52)     Municipal piped into yard  15 (14)  7 (13)  8 (16)     Community tap  35 (34)  19 (35)  16 (32)     Dam  1 (1)  1 (2)  0    Storage of household water (n=51)        0.73   Open container  10 (20)  6 (22)  4 (17)     Closed container  41 (80)  21 (78)  20 (83)    Storage of leftover food        0.54   Refrigerator  66 (63)  33 (61)  33 (66)     Outside  33 (32)  17 (31)  16 (32)     Unknown/declined to answer  5 (5)  4 (8)  1 (2)    Leftover food reheated before consumption  89 (85)  43 (80)  46 (92)  0.21  Feeding bottles cleaned with soap (n=82)  57 (70)  35 (74)  22 (63)  0.19  Sanitation facilities available        0.67   Flush toilet  92 (94)  46 (96)  46 (96)     Pit toilet  6 (6)  4 (4)  2 (4)     None  6 (6)  4 (7)  2 (4)    Household income  2000 (1200–3000)  2000 (1300–2800)  2100 (1160–3350)  0.72  Receiving SASSA child support grant  73 (70)  38 (70)  35 (70)  0.99  Exposed to household tobacco smoke  65 (63)  32 (60)  33 (66)  0.61  Notes: SASSA = South African Social Security Agency. Numeric variables as median (IQR); categorical variables as number (%). Table 3 Caregiver and household characteristics of children with diarrhoeal disease Variable  Total (N=104)  With severe dehydration (N=54)  Without severe dehydration (N=50)  p-value  Primary caregiver age in years  25 (21–29)  24 (21–28)  27 (23–30)  0.07  Mother as primary caregiver  90 (86)  50 (93)  40 (80)  0.11  Primary caregiver level of education        0.17   Some formal education  90 (86)  45 (83)  45 (90)     Completed secondary education  12 (12)  9 (17)  3 (6)     Unknown/declined to answer  2 (2)  0  2 (4)    Primary caregiver employed  73 (70)  39 (72)  34 (68)  0.74  Day time caregiver        0.97   Mother  18 (17)  10 (19)  8 (16)     Other family member  29 (28)  14 (26)  15 (30)     Non-relative  13 (13)  6 (11)  7 (14)     Attends daycare  44 (42)  24 (44)  20 (40)    Meals provided at daycare (N=44)  23 (52)  16 (70)  7 (35)  0.02  Formal daycare institution (N=44)  6 (14)  3 (13)  3 (15)  0.99  Type of housing        0.50   Formal housing  60 (58)  31 (57)  29 (58)     Informal housing  44 (42)  23 (43)  21 (42)    Number of adults in dwelling  2 (2–3.25)  2 (2–3)  3 (2–4)  0.15  Number of children in dwelling  2 (1–3)  2 (1–3)  2 (1–3)  0.52  Source of drinking water        0.92   Municipal piped into dwelling  53 (51)  27 (50)  26 (52)     Municipal piped into yard  15 (14)  7 (13)  8 (16)     Community tap  35 (34)  19 (35)  16 (32)     Dam  1 (1)  1 (2)  0    Storage of household water (n=51)        0.73   Open container  10 (20)  6 (22)  4 (17)     Closed container  41 (80)  21 (78)  20 (83)    Storage of leftover food        0.54   Refrigerator  66 (63)  33 (61)  33 (66)     Outside  33 (32)  17 (31)  16 (32)     Unknown/declined to answer  5 (5)  4 (8)  1 (2)    Leftover food reheated before consumption  89 (85)  43 (80)  46 (92)  0.21  Feeding bottles cleaned with soap (n=82)  57 (70)  35 (74)  22 (63)  0.19  Sanitation facilities available        0.67   Flush toilet  92 (94)  46 (96)  46 (96)     Pit toilet  6 (6)  4 (4)  2 (4)     None  6 (6)  4 (7)  2 (4)    Household income  2000 (1200–3000)  2000 (1300–2800)  2100 (1160–3350)  0.72  Receiving SASSA child support grant  73 (70)  38 (70)  35 (70)  0.99  Exposed to household tobacco smoke  65 (63)  32 (60)  33 (66)  0.61  Variable  Total (N=104)  With severe dehydration (N=54)  Without severe dehydration (N=50)  p-value  Primary caregiver age in years  25 (21–29)  24 (21–28)  27 (23–30)  0.07  Mother as primary caregiver  90 (86)  50 (93)  40 (80)  0.11  Primary caregiver level of education        0.17   Some formal education  90 (86)  45 (83)  45 (90)     Completed secondary education  12 (12)  9 (17)  3 (6)     Unknown/declined to answer  2 (2)  0  2 (4)    Primary caregiver employed  73 (70)  39 (72)  34 (68)  0.74  Day time caregiver        0.97   Mother  18 (17)  10 (19)  8 (16)     Other family member  29 (28)  14 (26)  15 (30)     Non-relative  13 (13)  6 (11)  7 (14)     Attends daycare  44 (42)  24 (44)  20 (40)    Meals provided at daycare (N=44)  23 (52)  16 (70)  7 (35)  0.02  Formal daycare institution (N=44)  6 (14)  3 (13)  3 (15)  0.99  Type of housing        0.50   Formal housing  60 (58)  31 (57)  29 (58)     Informal housing  44 (42)  23 (43)  21 (42)    Number of adults in dwelling  2 (2–3.25)  2 (2–3)  3 (2–4)  0.15  Number of children in dwelling  2 (1–3)  2 (1–3)  2 (1–3)  0.52  Source of drinking water        0.92   Municipal piped into dwelling  53 (51)  27 (50)  26 (52)     Municipal piped into yard  15 (14)  7 (13)  8 (16)     Community tap  35 (34)  19 (35)  16 (32)     Dam  1 (1)  1 (2)  0    Storage of household water (n=51)        0.73   Open container  10 (20)  6 (22)  4 (17)     Closed container  41 (80)  21 (78)  20 (83)    Storage of leftover food        0.54   Refrigerator  66 (63)  33 (61)  33 (66)     Outside  33 (32)  17 (31)  16 (32)     Unknown/declined to answer  5 (5)  4 (8)  1 (2)    Leftover food reheated before consumption  89 (85)  43 (80)  46 (92)  0.21  Feeding bottles cleaned with soap (n=82)  57 (70)  35 (74)  22 (63)  0.19  Sanitation facilities available        0.67   Flush toilet  92 (94)  46 (96)  46 (96)     Pit toilet  6 (6)  4 (4)  2 (4)     None  6 (6)  4 (7)  2 (4)    Household income  2000 (1200–3000)  2000 (1300–2800)  2100 (1160–3350)  0.72  Receiving SASSA child support grant  73 (70)  38 (70)  35 (70)  0.99  Exposed to household tobacco smoke  65 (63)  32 (60)  33 (66)  0.61  Notes: SASSA = South African Social Security Agency. Numeric variables as median (IQR); categorical variables as number (%). DISCUSSION In this rural setting, children with severe dehydration presented more rapidly to a healthcare service than those without severe dehydration. In keeping with what is known about risks for diarrhoea-associated morbidity and mortality, in this cohort, older maternal age, older infant age and the use of ORS tended to be protective against severe dehydrating diarrhoea [26, 27, 30, 36–38]. In this generally low socio-economic rural community, though, there was no association between socio-economic factors and severe dehydrating diarrhoea. Children with severe dehydration presented a median of 6 h earlier to a healthcare facility than those without severe dehydration. This is in contrast to the South African CHIP’s findings that delay in seeking healthcare was an important modifiable factor in preventing diarrhoea-associated mortality [5]. The CHIP methodology relies on the treating medical team subjectively assigning potentially modifiable factors for all in-hospital deaths occurring in the participating hospitals, whereas the current study objectively evaluated delay in presentation to a healthcare facility before the outcome of severe dehydration or death having been assigned. Additionally, contrary to previous studies, few children in this setting had multiple healthcare contacts before admission with severe dehydration [13, 39]. These findings suggest that both caregivers and healthcare workers are responding appropriately to diarrhoea symptoms and severity. Complete uptake of rotavirus vaccination (92%), vitamin A supplementation (85%) and use of ORS (71%) was high in this cohort. However, fewer children with severe dehydration had received ORS before admission, and this highlights a possible area for strengthened intervention encouraging earlier ORS use to further reduce diarrhoea morbidity and mortality. More than half of these children admitted with diarrhoea had a concurrent infection, almost 20% were HIV-exposed but uninfected, 11% had severe acute malnutrition and 63% were exposed to household tobacco smoke. This illustrates the high burden of infectious and nutritional morbidity and detrimental exposures experienced in this rural and impoverished community. Maternal age tended to be younger in those with severe dehydration, possibly representing a lack of awareness around interventions such as ORS administration and timely seeking of healthcare for management of diarrhoea. Unlike studies performed elsewhere, in the current study, caregiver employment was not associated with severe dehydration [12], and the caregiver level of education in this cohort was low, with only 12% having completed secondary-level education. In such a generally vulnerable community with little variability in the level of employment and education of caregivers, it is difficult to appreciate the role this might play in delay in seeking healthcare and severity of dehydration. To our knowledge, this is the first study in a rural South African setting objectively evaluating factors associated with severe dehydrating diarrhoea. Strengths of this study include the prospective design allowing more detailed socio-economic and household data collection than would ordinarily be available in routine clinical notes and with less recall bias. Clinical evaluation of participants was conducted by trained and skilled clinicians using the same WHO IMCI clinical criteria for classification of diarrhoea severity and standardized admission stationery limiting inter-observer variability and misclassification. The study is limited in that it was a hospital-based study without inclusion of milder diarrhoea episodes not requiring admission and was unable to measure out of hospital diarrhoea-associated mortality before admission or following discharge. CONCLUSION The findings of this study do not support the perception that caregiver delay in seeking healthcare for children with diarrhoea is a driver of severe dehydration in this setting. Instead, these findings support that younger child and maternal age, severe acute malnutrition and less ORS use are associated with dehydrating diarrhoea in the rural Western Cape, South Africa. The high level of ORS and rotavirus vaccination uptake is encouraging. In light of these findings, we recommend generation of awareness amongst child healthcare providers that delay in seeking healthcare may not be an important modifiable factor in preventing diarrhoeal mortality in this community. Rather, to further reduce diarrhoea-associated severe dehydration and its consequences, we recommend strengthening of programmes to encourage exclusive breastfeeding, ORS use at the community level and continued timely healthcare seeking for children with symptoms of AD disease. REFERENCES 1 UNICEF, WHO. Diarrhea: why Children are Still Dying and What can be Done? Geneva, Switzerland: WHO Press, 2009, 68. 2 Fischer Walker CL, Rudan I, Liu L, et al.   Global burden of childhood pneumonia and diarrhoea. Lancet  2013; 381: 1405– 16. Google Scholar CrossRef Search ADS PubMed  3 Zodpey SP, Deshpande SG, Ughade SN, et al.   A prediction model for moderate or severe dehydration in children with diarrhoea. J Diarrhoeal Dis Res  1999; 17: 10– 16. Google Scholar PubMed  4 Gyimah SO. Interaction effects of maternal education and household facilities on childhood diarrhea in Sub-Saharan Africa: the case of Ghana. J Health Popul Dev Ctries  2003: 1– 17. 5 Stephen C. (ed.). Saving Children 2012-2013 . Pretoria: MRC Unit for Maternal and Infant Health Care Strategies, 2016, 1– 114. 6 South Afican Medical Research Council. Western Cape Mortality Profile 2011 . Cape Town: South African Medical Research Council, 2014, 1– 88. 7 Zodpey SP, Deshpande SG, Ughade SN, et al.   Risk factors for development of dehydration in children aged under five who have acute watery diarrhoea: a case-control study. Public Health  1998; 112: 233– 6. Google Scholar PubMed  8 Rahman AE, Moinuddin M, Molla M, et al.   Childhood diarrhoeal deaths in seven low- and middle-income countries. Bull World Health Organ  2014; 92: 664– 71. Google Scholar CrossRef Search ADS PubMed  9 Yassin K. Morbidity and risk factors of diarrheal diseases among under-five children in rural Upper Egypt. J Trop Pediatr  2000; 46: 282– 7. Google Scholar CrossRef Search ADS PubMed  10 Yilgwan C, Okolo S. Prevalence of diarrhea disease and risk factors in Jos University Teaching Hospital, Nigeria. Ann Afr Med  2012; 11: 217. Google Scholar CrossRef Search ADS PubMed  11 Maranhão HS, Medeiros MCC, Scaletsky ICA, et al.   The epidemiological and clinical characteristics and nutritional development of infants with acute diarrhoea, in north-eastern Brazil. Ann Trop Med Parasitol  2008; 102: 357– 65. Google Scholar CrossRef Search ADS PubMed  12 Ahmed FU, Karim E. Children at risk of developing dehydration from diarrhoea: a case-control study. J Trop Pediatr  2002; 48: 259– 63. Google Scholar CrossRef Search ADS PubMed  13 Kahabuka C, Kvåle G, Hinderaker S. Factors associated with severe disease from malaria, pneumonia and diarrhea among children in rural Tanzania – a hospital-based cross-sectional study. BMC Infect Dis  2012; 12: 219. Google Scholar CrossRef Search ADS PubMed  14 Fuchs SC, Victora CG, Martines J. Case-control study of risk of dehydrating diarrhoea in infants in vulnerable period after full weaning. BMJ  1996; 313: 391– 4. Google Scholar CrossRef Search ADS PubMed  15 Kosek M, Bern C, Guerrant RL. The global burden of diarrhoeal disease, as estimated from studies published between 1992 and 2000. Bull World Health Organ  2003; 81: 197– 204. Google Scholar PubMed  16 Johnson S, Hendson W, Crewe-Brown H, et al.   Effect of human immunodeficiency virus infection on episodes of diarrhea among children in South Africa. Pediatr Infect Dis J  2000; 19: 972– 9. Google Scholar CrossRef Search ADS PubMed  17 Cook ML, Nel E, Cotton MF. Pre-hospital management and risk factors in children with acute diarrhoea admitted to a short-stay ward in an urban South African hospital with a high HIV burden. South African J Child Heal  2013; 7: 84–87. 18 Woldemicael G. Diarrhoeal morbidity among young children in Eritrea: environmental and socioeconomic determinants. J Health Popul Nutr  2001; 19: 83– 90. Google Scholar PubMed  19 Etiler N, Velipasaoglu S, Aktekin M. Risk factors for overall and persistent diarrhoea in infancy in Antalya, Turkey: a cohort study. Public Health  2004; 118: 62– 9. Google Scholar CrossRef Search ADS PubMed  20 Lamberti LM, Fischer Walker CL, Noiman A, et al.   Breastfeeding and the risk for diarrhea morbidity and mortality. BMC Public Health  2011; 11(Suppl 3): S15. Google Scholar CrossRef Search ADS PubMed  21 Panda S, Deb AK, Chawla-Sarkar M, et al.   Factors associated with diarrhoea in young children and incidence of symptomatic rotavirus infection in rural West Bengal, India. Epidemiol Infect  2014; 142: 1848– 58. Google Scholar CrossRef Search ADS PubMed  22 Cama RI, Parashar UD, Taylor DN, et al.   Enteropathogens and other factors associated with severe disease in children with acute watery diarrhea in Lima, Peru. J Infect Dis  1999; 179: 1139– 44. Google Scholar CrossRef Search ADS PubMed  23 Escobar AL, Coimbra CE, Welch JR, et al.   Diarrhea and health inequity among Indigenous children in Brazil: results from the First National Survey of Indigenous People’s Health and Nutrition. BMC Public Health  2015; 15: 1– 11. Google Scholar CrossRef Search ADS PubMed  24 Groome MJ, Page N, Cortese MM, et al.   Effectiveness of monovalent human rotavirus vaccine against admission to hospital for acute rotavirus diarrhoea in South African children: a case-control study. Lancet Infect Dis  2014; 14: 1096– 104. Google Scholar CrossRef Search ADS PubMed  25 Madhi SA, Cunliffe NA, Steele D, et al.   Effect of human rotavirus vaccine on severe diarrhea in African infants. N Engl J Med  2010; 362: 289– 98. Google Scholar CrossRef Search ADS PubMed  26 Victora CG, Bryce J, Fontaine O, Monasch R. Reducing deaths from diarrhoea through oral rehydration therapy. Bull World Health Organ  2000; 78: 1246– 55. Google Scholar PubMed  27 Black RE, Allen LH, Bhutta ZA, et al.   Maternal and child undernutrition: global and regional exposures and health consequences. Lancet  2008; 243– 60. 28 Fawzi WW, Mbise R, Spiegelman D, et al.   Vitamin A supplements and diarrheal and respiratory tract infections among children in Dar es Salaam, Tanzania. J Pediatr  2000; 137: 660– 7. Google Scholar CrossRef Search ADS PubMed  29 Al-Sonboli N, Gurgel RQ, Shenkin A, et al.   Zinc supplementation in Brazilian children with acute diarrhoea. Ann Trop Paediatr  2003; 23: 3– 8. Google Scholar CrossRef Search ADS PubMed  30 Lukacik M, Thomas RL, Aranda JV. A meta-analysis of the effects of oral zinc in the treatment of acute and persistent diarrhea. Pediatrics  2008; 121: 326– 36. Google Scholar CrossRef Search ADS PubMed  31 Sazawal S, Black RE, Bhan MK, et al.   Zinc supplementation in young children with acute diarrhea in India. N Engl J Med  1995; 333: 839– 44. Google Scholar CrossRef Search ADS PubMed  32 Western Cape Provincial Treasury. Regional Development Profile. City of Cape Town Working Paper. Cape Town, South Africa: Local Government Budget Office, 2012. 33 Visser M, Ferrer S. Farm Workers' Living and Working Conditions in South Africa : Key Trends, Emergent Issues, and Underlying and Structural Problems . Pretoria, South Africa: The Pretoria Office of the International Labour Organisation, 2015. 34 Kibel M, Saloojee H, Westwood T. Child Health For All. 4th edn. Cape Town: Oxford, 2007. 35 World Health Organization, UNICEF. Integrated Management of Childhood Illness Chart Booklet . 1st edn. Geneva: World Health Organization, 2004. 36 WHO. The Treatment of Diarrhea, a Manual for Physicians and Other Senior Health Workers. Geneva, Switzerland: WHO Press, 2005, 1– 44. 37 Molbak K. The epidemiology of diarrheal diseases in early childhood: a review of community studies in Guinea-Bassau. Dan Med Bull  2000; 47: 340– 58. Google Scholar PubMed  38 Levine AC, Munyaneza RM, Glavis-Bloom J, et al.   Prediction of severe disease in children with diarrhea in a resource-limited setting. PLoS One  2013; 8: 1– 11. Google Scholar CrossRef Search ADS   39 O’Reilly CE, Jaron P, Ochieng B, et al.   Risk factors for death among children less than 5 years old hospitalized with diarrhea in rural Western Kenya, 2005-2007: a cohort study. PLoS Med  2012; 9: 2005– 7. © The Author(s) [2018]. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

Journal

Journal of Tropical PediatricsOxford University Press

Published: Feb 5, 2018

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off