Executive Functions Brain System: An Activation Likelihood Estimation Meta-analytic Study

Executive Functions Brain System: An Activation Likelihood Estimation Meta-analytic Study Abstract Background and objective To characterize commonalities and differences between two executive functions: reasoning and inhibitory control. Methods A total of 5,974 participants in 346 fMRI experiments of inhibition or reasoning were selected. First level analysis consisted of Analysis of Likelihood Estimation (ALE) studies performed in two pooled data groups: (a) brain areas involved in reasoning and (b) brain areas involved in inhibition. Second level analysis consisted of two contrasts: (i) brain areas involved in reasoning but not in inhibition and (ii) brain areas involved in inhibition but not in reasoning. Lateralization Indexes were calculated. Results Four brain areas appear as the most critical: the dorsolateral aspect of the frontal lobes, the superior parietal lobules, the mesial aspect of the premotor area (supplementary motor area), and some subcortical areas, particularly the putamen and the thalamus. ALE contrasts showed significant differentiation of the networks, with the reasoning > inhibition—contrast showing a predominantly leftward participation, and the inhibition > reasoning—contrast, a clear right advantage. Conclusion Executive functions are mediated by sizable brain areas including not only cortical, but also involving subcortical areas in both hemispheres. The strength of activation shows dissociation between the hemispheres for inhibition (rightward) and reasoning (leftward) functions. Executive functions, Meta-analysis, fMRI, Reasoning, Inhibition Introduction The term “executive function” is relatively new in neurosciences. The observation that the frontal lobes were involved in regulatory behaviors, such as reasoning, problem solving, planning, inhibiting responses, strategy development and implementation, and working memory, resulted in the comprehensive term “executive function.” Luria (1980) is the direct antecessor of the concept of executive functions. He distinguished three functional units in the brain: (1) arousal-motivation (limbic and reticular systems); (2) receiving, processing, and storing information (post-Rolandic cortical areas); and (3) programming, controlling, and verifying activity (frontal lobes). Luria considered that this third unit had an executive role. “Executive functioning” indeed is a term currently addressed by many, but integrated by Lezak (1983). Baddeley (1986) grouped these behaviors into cognitive domains that, when impaired, include problems in planning, organizing behaviors, dis-inhibition, perseveration, reduced fluency, and initiation. The definition of executive function also includes the ability to filter interference, engage in goal-directed behaviors, reasoning, temporality of behavior, inhibition, anticipation of the consequences of one’s actions, and the adaptive concept of mental flexibility (Denckla, 1996; Stuss & Knight, 2002). The concept of morality, ethical behaviors, self-awareness, and the idea of the frontal lobes as manager and programmer of the human psyche are also included. Many authors have suggested different subcomponents of executive functions (e.g., Anderson, 2001; Delis, Kaplan, & Kramer, 2001; Denckla, 1994; Lezak, 1983), but differences in interpretation remain (Juarado & Rosselli, 2007). Clinical observations have demonstrated the important role of the prefrontal cortex in neurobehavioral syndromes (Luria, 1980; Stuss & Knight, 2002). Ardila (2008, 2013) suggested that the prefrontal lobe participates in two closely related but different executive function categories: (1) “meta-cognitive executive functions” such as reasoning, problem solving, planning, concept formation, strategy development and implementation, manipulating concepts in working memory, and the like; and (2) “emotional/motivational executive functions” such as inhibitory control and coordinating cognition and emotion/motivation. “Meta-cognitive” and “emotional/motivational” executive functions may have arisen at different times during human evolution, and although primates and hominids may possess (or have possessed) the second (e.g., inhibition, control), the first is observed only in humans (e.g., reasoning), and is therefore likely a recent evolutionary development. Meta-cognitive executive functions, and among them reasoning, have been frequently related with dorsolateral prefrontal activation. Using fMRI, dorsolateral prefrontal activation has been found in tasks such as solving the Tower of Hanoi (Fincham, Carter, van Veen, Stenger, & Anderson, 2002), Controlled Word Association Test (letter fluency) (Baldo, Schwartz, Wilkins, & Dronkers, 2006), working memory (Yoon, Hoffman, & D’Esposito, 2007), and solving the Wisconsin Card Sorting Test (Lie, Specht, Marshall, & Fink, 2006). According to Fuster (1997, 2002), the most general executive function of the lateral prefrontal cortex is the temporal organization of goal-directed actions in the domains of behavior, cognition, and language. Furthermore, dorsolateral prefrontal cortex seemingly plays a central role in global aspects of general intelligence (Barbey, Colom, & Grafman, 2013). Several studies of reasoning had shown association of this ability with the activation of dorsolateral prefrontal cortex (e.g., Babcock & Vallesi, 2015; Durning et al., 2015; Urbanski et al., 2016). The ventromedial and orbital areas of the prefrontal cortex are involved in the control of emotional behavior (Fuster, 2001, 2002). This function is related to the so-called “inhibitory control” of behavior (Miller & Wang, 2006). Clinical evidence (Luria, 1969; Stuss & Knight, 2002) as well as experimental research (Leung & Cai, 2007; Medalla, Lera, Feinberg, & Barbas, 2007) suggest that the neural substrate for this inhibitory function resides mainly in the medial and orbital portions of the prefrontal cortex. Fuster (2002) points out that “The apparent physiological objective of the inhibitory influences from orbitomedial cortex is the suppression of internal and external inputs that can interfere with whatever structure of behavior, speech, or cognition is about to be undertaken or currently underway” (p. 382). There seems to be also a relationship between orbitofrontal cortex and the basal ganglia in the inhibitory executive function (e.g., Bari & Robbins, 2013). Inhibition may be divided between cognitive and motor inhibition (Smith, Johnstone, & Barry, 2008). It has been reported that both types of inhibition activate similar frontal areas but that there is a dissociation between the brain hemispheres with a leftward predominance for cognitive inhibition (such as required in a Stroop test to overcome the interference given by the prepotent response) and rightward predominance for motor inhibition such as required in go/no-go tasks (Bernal & Altman, 2009). Cognitive inhibition has been much less studied compared to motor inhibition. Motor inhibition has been found associated to lateral and ventral frontal opercular areas, mainly the right inferior frontal gyrus and the anterior insula (Aron, Robbins & Poldrack, 2004; Hampshire, Chamberlain, Monti, Duncan & Owen, 2010). The medial frontal, the anterior cingulate gyrus, the middle frontal gyrus and the parietal lobule have been also found activating in these types of tasks (Rubia et al., 2001). Reasoning and inhibitory control represent two cardinal executive functioning abilities. Although reasoning and inhibition seem to be quite distinct functions, there has been described an interplay between control inhibition and reasoning. In formal reasoning there is always a competence between “belief-based“ and “logical-based” reasoning. For instance, stereotypical beliefs predispose judgment, and dreadful traumatic memories may sway reasoning from logical paths. Therefore, inhibitory control is needed to override intuitive responses and keep track within logic reasoning (De Neys & Van Gelder, 2009). This realization suggests that overlaps and dissociations should exist between inhibitory control and reasoning cortical representation. Reasoning is frequently regarded as one of the most basic meta-cognitive abilities (e.g., Jurado & Rosselli, 2007; Stuss & Knight, 2002; Stuss & Levine, 2002; Tirapu-Ustárroz, García-Molina, Ríos-Lago, & Ardila, 2012; Salthouse, 2005) which in association with perceptual speed has been hypothesized to be one of the underlying factors related to all executive functions (Salthouse, 1996, 2005). Moreover, inhibitory control seems to be at the bases of emotional/motivational executive function (e.g., Miller & Wang, 2006) as it is needed for accurate performance of other more complex executive functions. Consequently, when analyzing reasoning and inhibitory control we are dealing with two core fundamental executive functions. To the dispersion and complexity of sub-divisions of executive functions in the frontal lobes aforementioned we should add the involvement of other brain areas. Indeed, even though executive dysfunction usually follows focal brain injury of the frontal lobes, not all executive processes are exclusively sustained by the frontal cortex (Andrés & Van der Linden, 2002; Bettcher et al., 2016). Lesions in nearly any part of the brain have been associated with executive dysfunctions (Hausen, Lachmann, & Nagler, 1997). Contemporary research even finds strategy operations in the occipital cortical neurons on visual tasks (Super, Spekreijse & Lamme, 2001). Andrés (2003) analyzed two executive processes: inhibition and dual-task management. She concluded that (1) executive processes involve links between different brain areas, not exclusively with the frontal cortex, (2) patients with no evidence of frontal damage may present with executive deficits, and (3) patients with frontal lesions do not always show executive deficits. Using a multivariate twin study of three components of executive functions (inhibiting responses, updating working memory, and shifting between tasks), Friedman and colleagues (2008) found that executive functions are highly inter-correlated, suggesting a common factor that goes beyond general intelligence. Communality and differences in diverse executive functions have been proposed by different authors (e.g., Miyake, Friedman, Emerson, Witzki, & Howerter, 2000). In a recent meta-analysis of 28 imaging studies exploring reasoning it was found that the greater involvement is located in the left frontal and parietal lobes, the thalamus and putamen (Prado, Chadha & Booth, 2011). In a study with event-related fMRI of deductive reasoning task, it was found a sequential activation of occipital–parietal areas, dorsolateral frontal lobe and the parietal lobe on the left side. Interestingly, the parietal activation was specific to reasoning after controlling for other confounds. This is in line with the a recent report suggesting that inductive reasoning is predicted by the activation of both the frontal and the parietal lobes (Jia, Liang, Shi,Wang, & Li, 2015). Rightward lateralization of motor inhibition has been also previously described by several authors (e.g., Aron et al., 2004; Bernal & Altman, 2009; Rubia et al., 2001). Executive functions have been previously described as localized not only in the frontal lobes but in other lobes (Andrés & Van der Linden, 2002; Hausen et al., 1997). Nonetheless, as anticipated by a large number of publications, our results show that the main foci of activation were found in the frontal lobes, particularly in the dorsolateral cortex. Two additional areas were strongly involved in executive functions: the parietal lobe, very specially the superior parietal lobe and the mesial aspect of the premotor area in the frontal lobe (supplementary motor area). Foci of activation were also found subcortically, especially at the putamen and thalamus. The involvement of other brain areas in executive functions in addition to the prefrontal cortex may seem unexpected. We found that executive functions brain system involves not only the dorsolateral aspect of the frontal lobes—as usually assumed—but also the superior parietal lobules, the mesial aspect of the premotor area (supplementary motor area), and some subcortical areas, particularly the putamen and the thalamus. Nonetheless, diverse previous studies, including fMRI studies, have also found that the parietal lobe is directly involved in executive functions (Diamond, 2013; Fassbender et al., 2004; Garavan, Ross, Murphy, Roche, & Stein, 2002; Niendam et al., 2012; Sauseng, Klimesch, Schabus & Doppelmayr, 2005; Sylvester et al., 2003). For instance, Fassbender and colleagues (2004) used fMRI to study the brain processes involved in the executive control of behavior. They administered the Sustained Attention to Response Task (SART); a mixed (block and event-related) fMRI design was used to examine tonic and phasic processes involved in response inhibition, error detection, conflict monitoring and sustained attention. A network of regions, including right ventral prefrontal cortex, left dorsolateral prefrontal cortex and right inferior parietal cortex, was activated for successful unpredictable inhibitions, whereas the rostral anterior cingulate was implicated in error processing and the pre-supplementary motor area in conflict monitoring. Sylvester and colleagues (2003), using functional magnetic fMRI for both event-related and blocked design tasks, found evidence for common neural areas across both tasks in bilateral parietal cortex (BA40), left dorsolateral prefrontal cortex (BA9), premotor cortex (BA6), and medial frontal cortex (BA6/32). They also found areas preferentially involved in the switching of attention between mental counts (BA7, BA18) and the inhibition of a prepotent motor response (BA6, BA10), respectively. Thus, it seems well supported that the parietal lobes have a direct involvement in executive functions. Similarly, diverse studies have illustrated the involvement of the supplementary motor area in executive functions. For instance, Bonini and colleagues (2014), using intracerebral recording, observed the leading role in the neural network underlying the capacity to evaluate the outcomes of our actions—a fundamental executive function—is played by the supplementary motor area. Nachev, Kennard, & Husain (2008) have pointed out that the suupplementary motor area links cognition to action. Ridderinkhof, Ullsperger, Crone, & Nieuwenhuis (2004) suggest that this brain area participates in cognition control. Sylvester and colleagues (2003), using fMRI, found the medial “frontal cortex” (BA6/32) participates both in the switching of attention between tasks, and the resolution of interference between competing task responses. Functional neuroimaging studies have also shown the involvement of the basal ganglia and particularly the putamen in executive functions (Lewis, Dove, Robbins, Barker & Owen, 2004; Monchi, Petrides, Strafella, Worsley, & Doyon, 2006; Owen, 2004; Rogers, Andrews, Grasby, Brooks & Robbins, 2000; Sylvester et al., 2003). There is also evidence that the thalamus participates in an executive functions brain system (Alexander, DeLong, & Strick, 1986). For instance, Van der Werf and colleagues (2003) found evidence of deficits of memory, executive functioning, and attention following infarction in the thalamus. Radanovic, Azambuja, Mansur, Porto, & Scaff (2003) studied six patients with thalamic vascular lesions to characterize repercussions in their communicative abilities as well as the interface between language alterations and other cognitive abilities such as attention, memory and frontal executive. Results showed these patients present impairment in several cognitive domains, especially attention and executive functions. Furthermore, there is clear evidence that in cases of basal ganglia diseases, such as Parkinson and Huntington diseases, impairments in executive functions are found (e.g., Lawrence et al., 1996; Robbins et al., 1994; Owen et al., 1992; Taylor, Saint-Cyr, & Lang, 1986). The specific purpose of this study was to pinpoint the relative contribution of different brain areas to these two core “executive functions” allowing the characterization of their networks. We hypothesized that (i) motor inhibition and reasoning may share activation areas, mostly in prefrontal lobes; (ii) distinct brain areas both pre-Rolandic and post-Rolandic, cortical and subcortical, become active during the performance of inhibition and reasoning tasks; (iii) there is a brain asymmetry for each of these functions; and (iv) there is left lateralization for reasoning, departing from the assumption that reasoning is strongly mediated by language, and language is usually lateralized to the left hemisphere (Langdon & Warrington, 2000; Luria, 1976, 1980; Turner, Marinsek, Ryhal & Miller, 2015; Urbanski et al., 2016; Vygotsky, 1934/2012). Materials and Methods The DataBase of Brainmap (http://brainmap.org) (Fox & Lancaster, 2002; Laird et al., 2005b) was accessed on August 10, 2016, utilizing Sleuth 2. Sleuth is the software provided by Brainmap to query its database. This is solid and a well-known DataBase that has been widely used in a variety of similar studies (e.g., Daniel, Katz & Robinson, 2016; Hill, Laird & Robinson, 2014; Kohn et al., 2014). Two queries were performed and will be explained subsequently. Two automatic meta-analyses of peaks of activation across studies/participants were initially conducted (first level analysis). The first meta-analysis was intended to assess the brain areas involved in reasoning tasks. The second meta-analysis was intended to assess the specific areas involved in inhibition. In a second level analysis two between-group contrasts were performed to assess: (a) the areas involved more in reasoning than in inhibitory control (R > I) and (b) the areas involved more in inhibition than in reasoning (I > R). Automatic meta-analyses were done by pooling co-activation patterns utilizing the Sleuth software. This program finds, filters, organizes, plots, and exports the activation peak coordinates for further statistical analysis of its results. Sleuth provides a list of foci, in Talairach or MNI coordinates, each one representing the center of mass of a cluster of activation. The method allows selecting the studies according to certain conditions (such as age, normal vs. patients, type of paradigm, domain of cognition, etc.). By pooling the data with these conditions the tool provides a universe of activations that can be statistically analyzed for significant commonality across studies. For this purpose, Activation Likelihood Estimation (ALE) (Laird et al., 2005a,b; Turkeltaub, Eden, Jones, & Zeffiro, 2002) was performed utilizing GingerALE, software also provided by Brainmap. The tool assesses the probability of an event to occur at voxel level across the studies, and the likelihood of peak-clusterization contrasting with thousands of iterations with random distribution of a number of peaks that would serve as null-hypothesis baseline. First Level Analysis Query 1: Reasoning The search conditions were: (1) studies using fMRI; (2) context: normal participants; (3) activations: activation only; (4) handedness: right-handed participants; (5) age 15–60 years; (6) domain: cognition; and (7) subdomain: reasoning. Fifty-four papers with 155 suitable experiments with a total of 2,457 participants were found (see  Appendix A). In those studies in which the samples included participants with clinical conditions only the analyses with healthy controls were included. As seen in the  Appendix, reasoning tasks varied across studies including the interpretation of metaphors, categorization between abstract and concrete words, tests of intelligence, problems solving and theory of mind tests. Co-activation coordinates in MNI space were exported to text files. Analysis of Likelihood Estimation (ALE) over the pooled data was then performed utilizing GingerALE (provided also by Brainmap.org). ALE maps were thresholded at p < .05 corrected for multiple comparisons utilizing the false discovery rate technique. Only clusters of 1,000 or more cubic mm where accepted as valid clusters. ALE results were overlaid onto an anatomical template suitable for MNI coordinates, also provided by BrainMap.org. For this purpose, we utilized the Multi-Image Analysis GUI (Mango) (http://ric.uthscsa.edu/mango/), Mosaics of 4 × 4 insets of transversal fusioned images were generated utilizing a plugin of the same tool, selecting every other image, starting on image No. 10, and exported to a 2D-jpg image. Query 2: Inhibition Search conditions were the same as those used in Study 1, except for subdomain: for this case set to “inhibition”. Seventy-seven papers with 191 suitable experiments with a total of 3,517 participants were found (see  Appendix B). As indicated in the  Appendix, different tasks were included in the assessment of inhibitory control, most of them using the Go-NoGo paradigm. In those studies in which the samples included participants with clinical conditions only the analyses with healthy controls were included. Subsequently, (ALE) meta-analysis was performed utilizing the same technique and settings described for the first meta-analysis.  Appendix C presents the general characteristics of the populations used in the different meta-analyses included in this paper. Second Level: Contrast Analysis Contrast analyses of the two datasets were performed utilizing the GingerALE tool. For this purpose, inhibition and reasoning thresholded data images were uploaded into the software as Data Set 1 and Data Set 2, respectively. The foci coordinates of both domains were pooled in a single text file. Results were thresholded at 0.05 corrected for multiple comparisons with False Discovery Rate method. Only clusters larger than 1,000 mm3 were accepted as valid clusters. To correct for study sizes (Eickhoff, Bzdok, Laird, Kurth & Fox, 2012), GingerALE creates simulated data to find after many permutations of possible subtraction a voxel-wise null-hypothesis p value image, to show where the true data’s values sit on the distribution of values in that voxel. 10,000 permutations were utilized for this purpose. ALE values were converted to Z scores to show the significance of the difference. Two outputs were obtained: (1) inhibition map subtracted from Reasoning map (R > I contrast); (2) reasoning map subtracted from Inhibition map (I > R contrast); ALE computes contrasts as simple voxel value subtraction, against a null-hypothesis derived from the number of random permutations. Lateralization indexes (LI) based on the sum of cluster sizes per hemisphere were calculated for each group activation and the two contrasts utilizing the equation: LI = (Voxels Left – Voxels Right)/(Total voxels in both hemispheres). LI between −1.0 and −0.2 will be judged lateralized to the right; LI between 0.20 and 1.0 will be judged lateralized to the left. Values between −0.2 and 0.2 will be taken as symmetrical activation. There is not an accepted value to be used as cut-off score for considering clusters to be left-lateralized, right-lateralized, or bilateral. Some authors use 0.25 (e.g., Lehericy et al., 2000), other authors use 0.1 (e.g., Yuan et al., 2006); nonetheless, seemingly it is more frequent to use 0.2 (e.g., Deblaere et al., 2004). We decided to use 0.2 as a cut-off score. Results Reasoning Table 1 presents the main clusters of activation related to reasoning. Fig. 1 illustrates the resultant map of activation. Ten different clusters were found, four related to the left hemisphere, three to the right hemisphere, and three both to the left and the right hemisphere. ALE scores are quite similarly distributed between both hemispheres, with no significant lateralization (LI = −0.011). Cluster #1 involves left parietal areas (BA7—superior parietal lobe and BA40—supramarginal gyrus) and the posterior cingulate bilaterally (BA31). Cluster #2 is quite similar to Cluster #3, but in the opposite hemisphere; it includes BA9—middel frontal gurys, BA6—premotor cortex, BA10—prefrtonal, BA45—pars triangularis and BA46—anterior middle frontal gytus. Cluster #4 is located in the right hemisphere, specifically in BA7—superior parietal lobe, BA19—interior occipital gyrus, and BA31—dorsal posterior cingulate area. Cluster #5 is bilateral involving BA6 and also BA32 in the right. Clusters #6 and #7 report activation located in the claustra in both sides, but a close inspection shows that they indeed correspond to insular activation. Cluster #8 corresponds to the left BA6. The last two clusters (Clusters #9 and #10) are located subcortically, in the basal ganglia and thalami. Table 1. Main loci of brain activity related to reasoning by ALE Side—Brodmann area (BA)  Volume (mm3)  Cluster #1   Left 7, 40, 31; Right 31  18,032  Cluster #2   Right 9, 6, 10, 45  14,088  Cluster #3   Left 9, 6, 10, 46  13,520  Cluster #4   Right 7, 19, 31  9,152  Cluster #5   Right 6; Left 32, 6  7,504  Cluster #6   Left insula  4,064  Cluster #7   Right insula  3,744  Cluster #8   Left 6  2,864  Cluster #9   Right caudate, right thalamus, left thalamus  2,472  Cluster #10   Left lentiform nucleus, left thalamus  2,184  Side—Brodmann area (BA)  Volume (mm3)  Cluster #1   Left 7, 40, 31; Right 31  18,032  Cluster #2   Right 9, 6, 10, 45  14,088  Cluster #3   Left 9, 6, 10, 46  13,520  Cluster #4   Right 7, 19, 31  9,152  Cluster #5   Right 6; Left 32, 6  7,504  Cluster #6   Left insula  4,064  Cluster #7   Right insula  3,744  Cluster #8   Left 6  2,864  Cluster #9   Right caudate, right thalamus, left thalamus  2,472  Cluster #10   Left lentiform nucleus, left thalamus  2,184  Note: ALE = Analysis of Likelihood Estimation. BA6 = supplementary motor area; BA7 = superior parietal lobe; BA9 = dorsolateral prefrontal cortex; BA10 = anterior prefrontal cortex; BA19 = associative visual cortex; BA31 = dorsal posterior cingulate cortex; BA32 = dorsal anterior cingulate cortex; BA45 = pars triangularis ; BA46 = dorsolateral prefrontal cortex (see  Appendix D for the names of the different Brodmann areas). Table 1. Main loci of brain activity related to reasoning by ALE Side—Brodmann area (BA)  Volume (mm3)  Cluster #1   Left 7, 40, 31; Right 31  18,032  Cluster #2   Right 9, 6, 10, 45  14,088  Cluster #3   Left 9, 6, 10, 46  13,520  Cluster #4   Right 7, 19, 31  9,152  Cluster #5   Right 6; Left 32, 6  7,504  Cluster #6   Left insula  4,064  Cluster #7   Right insula  3,744  Cluster #8   Left 6  2,864  Cluster #9   Right caudate, right thalamus, left thalamus  2,472  Cluster #10   Left lentiform nucleus, left thalamus  2,184  Side—Brodmann area (BA)  Volume (mm3)  Cluster #1   Left 7, 40, 31; Right 31  18,032  Cluster #2   Right 9, 6, 10, 45  14,088  Cluster #3   Left 9, 6, 10, 46  13,520  Cluster #4   Right 7, 19, 31  9,152  Cluster #5   Right 6; Left 32, 6  7,504  Cluster #6   Left insula  4,064  Cluster #7   Right insula  3,744  Cluster #8   Left 6  2,864  Cluster #9   Right caudate, right thalamus, left thalamus  2,472  Cluster #10   Left lentiform nucleus, left thalamus  2,184  Note: ALE = Analysis of Likelihood Estimation. BA6 = supplementary motor area; BA7 = superior parietal lobe; BA9 = dorsolateral prefrontal cortex; BA10 = anterior prefrontal cortex; BA19 = associative visual cortex; BA31 = dorsal posterior cingulate cortex; BA32 = dorsal anterior cingulate cortex; BA45 = pars triangularis ; BA46 = dorsolateral prefrontal cortex (see  Appendix D for the names of the different Brodmann areas). Fig. 1. View largeDownload slide Reasoning. Functional connectivity map using Meta-Analytic Connectivity Modeling. Sixteen transversal descending cuts have been selected from the brain MRI anatomical volume. Left hemisphere appears on the left side (neurological convention). Clusters are color coded for intensity from low (red) to high (yellow). Main clusters are circled at the most representative level and numbered according with their respective cluster number (see Table 1). Note: some areas belonging to the same cluster may appear disconnected due to the discontinuity of the sampling cuts. Fig. 1. View largeDownload slide Reasoning. Functional connectivity map using Meta-Analytic Connectivity Modeling. Sixteen transversal descending cuts have been selected from the brain MRI anatomical volume. Left hemisphere appears on the left side (neurological convention). Clusters are color coded for intensity from low (red) to high (yellow). Main clusters are circled at the most representative level and numbered according with their respective cluster number (see Table 1). Note: some areas belonging to the same cluster may appear disconnected due to the discontinuity of the sampling cuts. Summarizing, both hemispheres and same brain areas are activated in a relatively symmetrical and similar manner during the performance of reasoning tasks. These areas include: (a) a frontal activation area involving some premotor, dorsomedial and frontopolar zones; (b) a parietal area including the superior parietal area and extending towards the inferior parietal (left) and the cingulate gyrus and the occipital (right); (c) the mesial extension of the premotor areas. These are the three major areas involved in the “reasoning circuit”. But also—even though in a lesser degree; (d) the insula; and (e) two subcortical areas, located at the level of the basal ganglia and the thalamus. Inhibition Control Table 2 and Fig. 2 present the main loci of brain connectivity for the inhibition condition. Twelve different clusters were found, eight related to the left hemisphere, and four to the right hemisphere. The first one, however, was particularly large (34,408 mm3), almost twice as large as the second and third, and about 30 times larger than the last two clusters of activation. Cluster #1 was located in the right hemisphere, involving the anterior insula as well as the premotor area and the dorsolateral prefrontal cortex. Cluster #2 included left BA6, BA32 and BA31, and right BA6, and BA32; that means, it is situated in the mesial aspect of the cerebral hemispheres involving the supplementary motor area and the cingulate gyrus. Cluster #3 was a left parietal cluster (BA7, BA40) but also posterior cingulate (BA31). Cluster #4 was a left cluster involving the area of the insula and precentral gyrus and extending subcortically to the caudate and the lenticular nucleus; it is quite similar to cluster #6, but in the opposite hemisphere. Cluster #5 was found in the left hemisphere, involving the insula (BA13) and the parietal areas BA7, BA40, and BA39. Cluster #7 was a left frontal cluster, including the middle and precentral frontal gyri. Cluster #8 was a left prefrontal/premotor cluster of activation. The last four clusters were smaller than 2,000 mm3; they included the left prefrontal areas BA10 and BA9, the left posterior cingulate cortex (BA23), the right inferior temporal gyrus and the homologous left area. Global activation showed a LI of −0.261 indicating a hemispheric mild right lateralization. Table 2 Main loci of brain activity related to Inhibition by ALE Side—Brodmann area (BA)  Volume (mm3)  Cluster #1   Right insula, 9, 6, 8, 47  34,408  Cluster #2   Left 6, 32, 31; Right 6, 32  21,512  Cluster #3   Right 40, 7, 31; Left 7  18,360  Cluster #4   Left Insula, caudate, lentiform nucleus, precentral gyrus  11,720  Cluster #5   Left 7, 40, 39, 13  11,352  Cluster #6   Right lentiform nucleus, thalamus, caudate  6,328  Cluster #7   Left middle frontal gyrus, precentral gyrus  3,824  Cluster #8   Left 9, 6  2,080  Cluster #9   Left 10, 9  1,688  Cluster #10   Left 23  1,504  Cluster #11   Right inferior temporal gyrus  1,320  Cluster #12   Left 37  1,088  Side—Brodmann area (BA)  Volume (mm3)  Cluster #1   Right insula, 9, 6, 8, 47  34,408  Cluster #2   Left 6, 32, 31; Right 6, 32  21,512  Cluster #3   Right 40, 7, 31; Left 7  18,360  Cluster #4   Left Insula, caudate, lentiform nucleus, precentral gyrus  11,720  Cluster #5   Left 7, 40, 39, 13  11,352  Cluster #6   Right lentiform nucleus, thalamus, caudate  6,328  Cluster #7   Left middle frontal gyrus, precentral gyrus  3,824  Cluster #8   Left 9, 6  2,080  Cluster #9   Left 10, 9  1,688  Cluster #10   Left 23  1,504  Cluster #11   Right inferior temporal gyrus  1,320  Cluster #12   Left 37  1,088  Note: ALE = Analysis of Likelihood Estimation. BA6 = supplementary motor area; BA7 = superior parietal lobe; BA9 = dorsolateral prefrontal cortex; BA10 = anterior prefrontal cortex; BA13 = insula; BA19 = associative visual cortex; BA23 = ventral posterior cingulate cortex; BA31 = dorsal posterior cingulate cortex; BA32 = dorsal anterior cingulate cortex; BA37 = fusiform gyrus BA39 = angular gyrus; BA40 = supramarginal gyrus; BA45 = pars triangularis; BA46 = dorsolateral prefrontal cortex; BA47 = pars orbitalis (see  Appendix D for the names of the different Brodmann areas). Table 2 Main loci of brain activity related to Inhibition by ALE Side—Brodmann area (BA)  Volume (mm3)  Cluster #1   Right insula, 9, 6, 8, 47  34,408  Cluster #2   Left 6, 32, 31; Right 6, 32  21,512  Cluster #3   Right 40, 7, 31; Left 7  18,360  Cluster #4   Left Insula, caudate, lentiform nucleus, precentral gyrus  11,720  Cluster #5   Left 7, 40, 39, 13  11,352  Cluster #6   Right lentiform nucleus, thalamus, caudate  6,328  Cluster #7   Left middle frontal gyrus, precentral gyrus  3,824  Cluster #8   Left 9, 6  2,080  Cluster #9   Left 10, 9  1,688  Cluster #10   Left 23  1,504  Cluster #11   Right inferior temporal gyrus  1,320  Cluster #12   Left 37  1,088  Side—Brodmann area (BA)  Volume (mm3)  Cluster #1   Right insula, 9, 6, 8, 47  34,408  Cluster #2   Left 6, 32, 31; Right 6, 32  21,512  Cluster #3   Right 40, 7, 31; Left 7  18,360  Cluster #4   Left Insula, caudate, lentiform nucleus, precentral gyrus  11,720  Cluster #5   Left 7, 40, 39, 13  11,352  Cluster #6   Right lentiform nucleus, thalamus, caudate  6,328  Cluster #7   Left middle frontal gyrus, precentral gyrus  3,824  Cluster #8   Left 9, 6  2,080  Cluster #9   Left 10, 9  1,688  Cluster #10   Left 23  1,504  Cluster #11   Right inferior temporal gyrus  1,320  Cluster #12   Left 37  1,088  Note: ALE = Analysis of Likelihood Estimation. BA6 = supplementary motor area; BA7 = superior parietal lobe; BA9 = dorsolateral prefrontal cortex; BA10 = anterior prefrontal cortex; BA13 = insula; BA19 = associative visual cortex; BA23 = ventral posterior cingulate cortex; BA31 = dorsal posterior cingulate cortex; BA32 = dorsal anterior cingulate cortex; BA37 = fusiform gyrus BA39 = angular gyrus; BA40 = supramarginal gyrus; BA45 = pars triangularis; BA46 = dorsolateral prefrontal cortex; BA47 = pars orbitalis (see  Appendix D for the names of the different Brodmann areas). Fig. 2. View largeDownload slide Inhibition. Functional connectivity map using Meta-Analytic Connectivity Modeling. Image uses same conventions than previous one. Main clusters have been circled with their numbers corresponding to cluster numbers. Note that cluster 1 extends from right insula to lateral and dorsal aspect of the frontal lobe (three circles numbered as 1 have been placed in different cuts). Left precentral and right ganglio-basal clusters mirroring clusters 7 and 4, respectively, have not been circled to avoid cluttering. Fig. 2. View largeDownload slide Inhibition. Functional connectivity map using Meta-Analytic Connectivity Modeling. Image uses same conventions than previous one. Main clusters have been circled with their numbers corresponding to cluster numbers. Note that cluster 1 extends from right insula to lateral and dorsal aspect of the frontal lobe (three circles numbered as 1 have been placed in different cuts). Left precentral and right ganglio-basal clusters mirroring clusters 7 and 4, respectively, have not been circled to avoid cluttering. In summary, it was found, (a) a very large focus of activation observed in the right hemisphere, including the insula, the premotor area and the dorsolateral prefrontal cortex; (b) a second focus of activation, including mesial aspect of the cerebral hemispheres involving the supplementary motor areas and the cingulate gyri; (c) symmetrical clusters of activation in the right and left, including the superior and inferior parietal areas; (d) bilateral activation of the basal ganglia and right thalamus; and (e) a relatively weak activation of the left posterior cingulate gyrus and right posterior inferior temporal gyrus and fusiform gyrus. Contrast Analysis Areas more involved in reasoning than in inhibitory control Subtracting the brain areas involved in inhibitory control from the reasoning areas, it was deduced those areas were participating in reasoning more preferentially than in inhibitory control (R > I). Results are presented in Table 3 and Fig. 3 (red clusters). Table 3 Main loci of brain: reasoning > inhibition Side—Brodmann area (BA)  Volume (mm3)  Cluster #1   Left 46, 9, 6, 8  7,824  Cluster #2   Left 39, 40  3,392  Cluster #3   Left 23, Right 31  1,744  Cluster #4   Left 6  1,240  Cluster #5   Right 6  1,224  Side—Brodmann area (BA)  Volume (mm3)  Cluster #1   Left 46, 9, 6, 8  7,824  Cluster #2   Left 39, 40  3,392  Cluster #3   Left 23, Right 31  1,744  Cluster #4   Left 6  1,240  Cluster #5   Right 6  1,224  Note: ALE = Analysis of Likelihood Estimation. BA6 = supplementary motor area; BA8 = premotor–frontal eye field; BA9 = dorsolateral prefrontal cortex; BA23 = ventral posterior cingulate cortex; BA31 = dorsal posterior cingulate cortex; BA32 = dorsal anterior cingulate cortex; BA37 = fusiform gyrus BA39 = angular gyrus; BA40 = supramarginal gyrus; BA46 = dorsolateral prefrontal cortex (see  Appendix D for the names of the different Brodmann areas). Table 3 Main loci of brain: reasoning > inhibition Side—Brodmann area (BA)  Volume (mm3)  Cluster #1   Left 46, 9, 6, 8  7,824  Cluster #2   Left 39, 40  3,392  Cluster #3   Left 23, Right 31  1,744  Cluster #4   Left 6  1,240  Cluster #5   Right 6  1,224  Side—Brodmann area (BA)  Volume (mm3)  Cluster #1   Left 46, 9, 6, 8  7,824  Cluster #2   Left 39, 40  3,392  Cluster #3   Left 23, Right 31  1,744  Cluster #4   Left 6  1,240  Cluster #5   Right 6  1,224  Note: ALE = Analysis of Likelihood Estimation. BA6 = supplementary motor area; BA8 = premotor–frontal eye field; BA9 = dorsolateral prefrontal cortex; BA23 = ventral posterior cingulate cortex; BA31 = dorsal posterior cingulate cortex; BA32 = dorsal anterior cingulate cortex; BA37 = fusiform gyrus BA39 = angular gyrus; BA40 = supramarginal gyrus; BA46 = dorsolateral prefrontal cortex (see  Appendix D for the names of the different Brodmann areas). Fig. 3. View largeDownload slide Contrasts. Clusters have been numbered in a consecutive manner. Red to yellow clusters: reasoning > inhibition. Main clusters correspond to left BA6, 8, 9, and 46 (circle 4); left BA39 and 40 (circle 2); and left BA23 and right 31 in the posterior cingulate gyrus (circle 6). Blue clusters: inhibition > reasoning. Main clusters correspond to left BA 6, bilateral BA23 and right BA32 (circle 1); right insula (BA13) and right BA47 (circle 8); right BA9 (circle 3); bilateral thalami and basal ganglia (circle 7); right BA7, 39 and 40 (circle 5). Of note is the right dominant lateralization of inhibition and the left lateralization for reasoning. Fig. 3. View largeDownload slide Contrasts. Clusters have been numbered in a consecutive manner. Red to yellow clusters: reasoning > inhibition. Main clusters correspond to left BA6, 8, 9, and 46 (circle 4); left BA39 and 40 (circle 2); and left BA23 and right 31 in the posterior cingulate gyrus (circle 6). Blue clusters: inhibition > reasoning. Main clusters correspond to left BA 6, bilateral BA23 and right BA32 (circle 1); right insula (BA13) and right BA47 (circle 8); right BA9 (circle 3); bilateral thalami and basal ganglia (circle 7); right BA7, 39 and 40 (circle 5). Of note is the right dominant lateralization of inhibition and the left lateralization for reasoning. It was observed that there are two major and three weaker brain areas involved in reasoning more than in inhibitory control. Both major areas are located in the left hemisphere, and include, on one hand a frontal area—BA46, BA9, BA6, and BA8—and on the other, a parietal lobe area—BA39, BA40. In addition, three weaker clusters were found: one bilateral involving the posterior cingulate gyrus; and the other two located in BA6, bilaterally. The LI for this contrast show a global strong leftward lateralization (LI = 0.858). In summary, the major conclusion is that left frontal and parietal areas are more directly involved in reasoning than in inhibition control. Areas more involved in inhibitory control than in reasoning Subtracting the brain areas involved in reasoning from the inhibitory control areas, it was deduced those areas were participating in the inhibitory control tasks more than in the reasoning tasks (I > R). Results are presented in Table 4 and Fig. 3 (blue clusters). Table 4. Main loci of brain: inhibition > reasoning Side—Brodmann area (BA)  Volume (mm3)  Cluster #1   Right 24, 32; Left 6, 24  10,528  Cluster #2   Right 13, 47  5,872  Cluster #3   Right 9  5,720  Cluster #4   Left 13, putamen, thalamus  5,144  Cluster #5   Right 13, 39, 40, 7  4,592  Cluster #6   Right thalamus, putamen  2,888  Cluster #7   Right 6  1,648  Cluster #8   Right 32  1,512  Cluster #9   Left 22, 40  1,160  Cluster #10   Right 7  1,096  Side—Brodmann area (BA)  Volume (mm3)  Cluster #1   Right 24, 32; Left 6, 24  10,528  Cluster #2   Right 13, 47  5,872  Cluster #3   Right 9  5,720  Cluster #4   Left 13, putamen, thalamus  5,144  Cluster #5   Right 13, 39, 40, 7  4,592  Cluster #6   Right thalamus, putamen  2,888  Cluster #7   Right 6  1,648  Cluster #8   Right 32  1,512  Cluster #9   Left 22, 40  1,160  Cluster #10   Right 7  1,096  Note: ALE = Analysis of Likelihood Estimation; BA6 = supplementary motor area; BA7 = superior parietal lobe; BA9 = dorsolateral prefrontal cortex; BA10 = anterior prefrontal cortex; BA13 = insula; BA19 = associative visual cortex; BA22 = superior temporal gyrus; BA24 = ventral anterior cingulate cortex; BA31 = dorsal posterior cingulate cortex; BA32 = dorsal anterior cingulate cortex; BA37 = fusiform gyrus BA39 = angular gyrus; BA40 = supramarginal gyrus; BA45 = pars triangularis; BA46 = dorsolateral prefrontal cortex; BA47 = pars orbitalis (see  Appendix D for the names of the different Brodmann areas). Table 4. Main loci of brain: inhibition > reasoning Side—Brodmann area (BA)  Volume (mm3)  Cluster #1   Right 24, 32; Left 6, 24  10,528  Cluster #2   Right 13, 47  5,872  Cluster #3   Right 9  5,720  Cluster #4   Left 13, putamen, thalamus  5,144  Cluster #5   Right 13, 39, 40, 7  4,592  Cluster #6   Right thalamus, putamen  2,888  Cluster #7   Right 6  1,648  Cluster #8   Right 32  1,512  Cluster #9   Left 22, 40  1,160  Cluster #10   Right 7  1,096  Side—Brodmann area (BA)  Volume (mm3)  Cluster #1   Right 24, 32; Left 6, 24  10,528  Cluster #2   Right 13, 47  5,872  Cluster #3   Right 9  5,720  Cluster #4   Left 13, putamen, thalamus  5,144  Cluster #5   Right 13, 39, 40, 7  4,592  Cluster #6   Right thalamus, putamen  2,888  Cluster #7   Right 6  1,648  Cluster #8   Right 32  1,512  Cluster #9   Left 22, 40  1,160  Cluster #10   Right 7  1,096  Note: ALE = Analysis of Likelihood Estimation; BA6 = supplementary motor area; BA7 = superior parietal lobe; BA9 = dorsolateral prefrontal cortex; BA10 = anterior prefrontal cortex; BA13 = insula; BA19 = associative visual cortex; BA22 = superior temporal gyrus; BA24 = ventral anterior cingulate cortex; BA31 = dorsal posterior cingulate cortex; BA32 = dorsal anterior cingulate cortex; BA37 = fusiform gyrus BA39 = angular gyrus; BA40 = supramarginal gyrus; BA45 = pars triangularis; BA46 = dorsolateral prefrontal cortex; BA47 = pars orbitalis (see  Appendix D for the names of the different Brodmann areas). Ten clusters of activation were found, seven at the right, two at the left, and one bilateral. The largest one includes BA24 in both the right and left hemisphere, and BA32 in the right and BA6 in the left; hence these clusters correspond to the supplementary motor area extending towards the anterior cingulate gyrus. Cluster #2 and #3 were located in the right hemisphere and include the anterior insula (BA13) and the prefrontal cortex areas BA47 and BA9. Cluster #4 is a left cluster including the insula and extending subcortically toward the putamen and thalamus. It is relatively homologous to cluster #6. Cluster #5 is a right cluster including the insula and the parietal lobe. Cluster #7 and cluster #8 have a mesial location, including the premotor area and the cingulate. Cluster #9 includes BA22 and BA40 in the left. The last cluster (cluster#10) consists of right BA7. The LI for this contrast, discarding cluster#1 as it shows bilateral representation, suggests a global strong rightward lateralization (LI = –0.574). In summary, results indicate that (a) a significant predominant activation of the right hemisphere is observed in inhibition tasks, involving specially the premotor/prefrontal area, and the insula/parietal zones; (b) an increased activation is observed bilaterally in some subcortical areas, in particular, the thalamus and the putamen; and (c) in some other cortical areas an increased activation is observed when performing inhibition tasks; these other areas include the premotor area BA6 and the cingulate area BA32. Discussion We present here for the first time a meta-analytic study contrasting two core executive functions (reasoning and inhibition) utilizing ALE methods. Our results confirm our hypotheses that inhibition and reasoning share activation areas in prefrontal lobes; it also suggests distinct subcortical and cortical pre and post-Rolandic areas involved in inhibition control and reasoning. We also observed that there is a brain asymmetry for each of these functions consisting in a rightward lateralization for inhibition and leftward lateralization for reasoning. Of note is the frequent significant involvement of the anterior insula, the involvement of the thalami and putamen, and the minimal involvement of the temporal lobe, virtually non-existing. Our purpose was not to do a simple standard meta-analysis of fMRI results, in which case the output does not involve hypothesis demonstration but instead only yields the description of results. Our purpose has been to utilize a meta-analytic approach of the coordinates of activations on domain-specific tasks, as the substract to feed the Activation Likelihood Estimate algorithm to compare fMRI results in two large groups. The method has been utilized previously by many authors. According to Eickhoff and colleagues (2012) ALE is a widely used technique for “coordinate-based meta-analysis of neuroimaging data”, which determines the convergence of foci reported from different experiments. The results of comparisons between groups (second level analysis) may then be compared utilizing standard statistics, e.g., p values, and other mathematical proofs allowing hypothesis testing, and demonstrations. Activation foci found in this meta-analysis could potentially indicate which parts of the brain are necessary for executive functions, that is, which are included in the “executive functions brain system”; however, it could also be conjectured that they are activated because they provide some information or support to the cognitive task that is analyzed. Nonetheless, considering the significant amount of research studies included in the current meta-analysis, it may be assumed that the activation foci found across different studies are indeed indicating the crucial brain areas involved in executive functions. Another crucial question in interpreting current results refers to the specificity of the activation. That is, are the activation foci really specific to executive functions tasks? Or could they be found during the performance of other tasks? An optimal control to answer this question would be to have a baseline activation and compare it with the target task activation. Noteworthy, this is a type of control that is usually required when analyzing the involvement of a brain area in a particular behavior. In other words, this control is included in the studies that were selected for the current meta-analysis. To have obtained strong divergent lateralization for inhibition and reasoning with the contrasts but not with the maps of meta-analytic activation on each group is intriguing. It suggests that the advantage of each hemisphere is in strength but not in extent. It also suggests that both hemispheres are capable of supporting the function with one of them more proficient on the task, which would be the reason the pooling data-LI is symmetric. We found a right dominant lateralization of inhibition and left lateralization for reasoning. This finding is congruent with contemporary literature in the area, which indicates that the left hemisphere is significantly involved in reasoning tasks (e.g., Boroojerdi et al., 2001; Goel & Dolan, 2004; Goel, Gold, Kapur & Houle, 1998; Haier et al., 1988; Langdon & Warrington, 2000) whereas the right hemisphere has a fundamental participation in inhibitory control (e.g., Aron et al. 2004; Casey et al., 1997; Garavan, Ross & Stein, 1999 ; Hampshire et al. 2010). Current results may have important theoretical and clinical implications. They may serve as a point of departure to further characterize the distinct circuits involved in diverse subcomponents of executive functions; for instance, morality, time perception, working memory, etc. The delineation of different subcomponents of executive functions can contribute to the understanding of the neurological bases of human cognition, taking into consideration that there is not an agreement yet about the unity or diversity of executive functions (Ardila, 2008; Duncan & Owen, 2000; Miyake et al., 2000; Niendam et al., 2012). They also can contribute to understand the complexity of the executive disorders observed in cases of brain pathology, taking into consideration the heterogeneity of the executive function syndrome (Godefroy, 2003; Miyake, 2000). Many limitations in our study have to be recognized. The use of a specific database—Brainmap—results in an unavoidable bias. The authors are aware that many more articles have described brain activation during executive function tasks, but they are not included in this specific database. Despite this limitation, the authors estimate the number of studies/participants/experiments entering the pooling-data was large and reflects the state of the art in fMRI of executive functions. A limitation of the current study is how executive functioning was defined across the studies; while there was a more homogenous objective paradigm used in the definition of inhibitory control, the reasoning paradigms were much more heterogeneous and less operationally defined, increasing the possibility that other cognitive functions besides reasoning were involved while performing these tasks. However, the consistency of findings with prior publications seems to dissipate this concern. Inhibition control has been used as a rather generic term. Extrapolation of conclusions into the vast domain of inhibition control is troublesome. However, as stated before, motor inhibition should be at the base of other more complex control-inhibitory functions. The importance of motor encoding/processing in high complex cognitive functions and representations have been highlighted previously (Koziol, Budding & Chidekel, 2012). An additional limitation must be considered. It has been well established that there is publication bias in different scientific areas, including in meta-analytic studies (van Enst, Ochodo, Scholten, Hooft & Leeflang, 2014). As a general rule, only studies supporting significant differences get published; negative results tend to be ignored. Evidently, this publication bias can significantly affect the results of meta-analysis. Furthermore, there is also a potential bias at the individual study level, and the quality and significance of different studies included in any meta-analysis can be quite different. We are also aware of the limitations collecting and pooling studies from different sources and the affect it could have in the result analysis. Of special importance is the diversity of paradigms utilizing different stimuli (visual, auditory, somatosensory), the involvement of motor responses, and the need of stringent controls to prevent cognitive noise activation. However, we feel that the obtained results truly represent the commonality of the target condition. No other explanation has that no motor activation was obtained in the motor inhibition pooling activation in spite that the vast majority of participants were performing a motor task. Nor visual or auditory activation was obtained in regardless of the modality of presentation of the stimuli. All “activations” related to stimulus or response existing in the control condition should only appear with negative sign signal in the target condition. This type of responses was not taken into account, as explicitly explained in methods (inclusion: only positive activations). In conclusion, a number of complex cognitive and control functions have been attributed to the prefrontal lobes. They share a number of brain areas, but the strength with which they are involved, are dissociated between the hemispheres. The left hemisphere is more involved in reasoning; the right hemisphere is more involved in inhibition. Conflict of Interest Dr Byron Bernal is President and owner of fMRI Consulting Inc. Acknowledgment Our gratitude to Deven Christopher for her editorial support. Appendix Appendix A. Studies included in reasoning Publication  Paradigm  n  Foci  Acuna, Eliassen, Donoghue, and Sanes (2002)  Transitive Inference – Visual Height Comparison  15  17  Aziz-Zadeh, Wilson, Rizzolatti, and Iacoboni (2006)  Metaphorical Phrases > Literal Phrases  12  2  Aziz-Zadeh et al. (2009)  Aha Solutions > Search Solutions  12  8  Castelli, Happé, Frith, and Frith (2000)  Theory of Mind (ToM) > Random  6  10  Castelli et al. (2000)  Random > ToM  6  1  Castelli et al. (2000)  Correlation: Activation vs. Intentionality Score  6  9  Decety, Jackson, Sommerville, Chaminade, and Meltzoff (2004)  Cooperation vs. Independent  12  8  Decety et al. (2004)  Competition vs. Independent  12  10  Decety et al. (2004)  Cooperation vs. Competition  12  9  Diaz and Hogstrom (2011)  Metaphor > Literal  16  6  Diaz and Hogstrom (2011)  Congruent > Incongruent  16  10  Diaz and Hogstrom (2011)  Incongruent > Congruent  16  3  Ebisch et al. (2012)  High-Fluid Intelligence (Gf) > Low-Gf  10  2  Ebisch et al. (2012)  Induction Conjunction Analysis  10  5  Ebisch et al. (2012)  Visualization Conjunction Analysis  10  3  Fairhall, Anzellotti, Ubaldi, and Caramazza (2014)  Main effect, Person  16  9  Fairhall et al. (2014)  Main effect, Place  16  8  Fairhall et al. (2014)  Category × Task, Person  16  1  Fairhall et al. (2014)  Category × Task, Place  16  4  Fairhall et al. (2014)  Picture-cued Semantic Access, Person  17  9  Fairhall et al. (2014)  Picture-cued Semantic Access, Place  17  8  Fairhall et al. (2014)  Word-cued Semantic Access, Person  17  2  Fairhall et al. (2014)  Word-cued Semantic Access, Place  17  5  Feinstein, Stein, and Paulus (2006)  Action Selection: Uncertain > Certain  16  2  Feinstein et al. (2006)  Action Selection > Outcome  16  2  Fincham et al. (2002)  Planning  8  13  Fletcher et al. (2001)  Decreases in activity during initial learning  12  9  Fletcher et al. (2001)  Main effects of all unpredictable events  12  8  Fletcher et al. (2001)  Modulation of unpredictability-related responses by type of causal relationship  12  5  Fletcher et al. (2001)  Effects of different unpredictable events within the same learning session  12  4  Fukui et al. (2006)  Human–Computer  16  2  Goel and Dolan (2001)  ((Abstract Reasoning + Concrete Reasoning) – (Abstract Baseline + Concrete Baseline))  14  19  Goel and Dolan (2001)  Concrete Reasoning – Concrete Baseline  14  12  Goel and Dolan (2001)  Abstract Reasoning – Abstract Baseline  14  5  Goel and Dolan (2001)  Conjunction (Abstract Reasoning – Abstract Baseline)(Concrete Reasoning – Concrete Baseline)  14  21  Goel and Dolan (2001)  (Abstract Reasoning + Baseline) – (Concrete Reasoning + Baseline)  14  5  Goel and Dolan (2001)  (Concrete Reasoning + Baseline) – (Abstract Reasoning + Baseline)  14  3  Goel and Dolan (2001)  Abstract Reasoning – Concrete Reasoning  14  2  Goel and Dolan (2001)  Concrete Reasoning – Abstract Reasoning  14  3  Grabner et al. (2009)  Procedural > Retrieval  28  9  Grèzes, Frith, and Passingham (2004)  Actions Judged to Reflect Deceptive Intent  11  11  Hampshire, Thompson, Duncan, and Owen (2011)  Peak Activation Coordinates During Reasoning  16  11  Hampshire et al. (2011)  Main Effect of Rule Complexity for Simultaneous Panels  16  9  Hampshire et al. (2011)  Main Effect of Analogical Distance for Simultaneous Panels  16  6  Hampshire et al. (2011)  Rule Complexity – Analogical Distance for Simultaneous Panels  16  9  Hampshire et al. (2011)  Analogical Distance – Rule Complexity for Simultaneous Panels  16  3  Hampshire et al. (2011)  Main Effect of Rule Complexity for Separate Panels  21  5  Hampshire et al. (2011)  Main Effect of Analogical Distance for Separate Panels  21  5  Hargreaves, White, Pexman, Pittman, and Goodyear (2012)  Animal SCT > Concrete SCT  15  16  Hargreaves et al. (2012)  Concrete SCT > Animal SCT  15  3  Herwig et al. (2011)  High Risk > Low Risk, Whole Evaluation Period  18  5  Herwig et al. (2011)  High Risk > Low Risk, First Volume  18  6  Herwig et al. (2011)  High Risk > Low Risk, First Two Volumes  18  13  Jack et al. (2013)  Social > Rest, Mechanical < Rest  45  2  Jack et al. (2013)  Mechanical > Rest, Social < Rest  45  3  Jack et al. (2013)  Social > Mechanical  45  42  Jack et al. (2013)  Mechanical > Social  45  32  Jimura, Konishi, and Miyashita (2004)  Negative - Neutral Feedback  21  15  Kalbfleisch, Van Meter, and Zeffiro (2007)  Areas modulated by task difficulty (Hard > Easy)  14  18  Kalbfleisch et al. (2007)  Areas modulated by response correctness (Correct > incorrect)  14  12  Kalbfleisch et al. (2007)  Areas modulated by task difficulty and correctness interaction  14  1  Konishi et al. (1998)  Three Dimensional – (Two + One Dimensional)  7  5  Konishi et al. (2002)  A Minus B (2 WCST variants)  16  16  Konishi et al. (2002)  B minus C (2 WCST variants)  16  9  Kounios et al. (2006)  Insight preparation > Noninsight Preparation  20  6  Kounios et al. (2006)  Noninsight preparation > Insight preparation Minus Control Feedback (Increases)  20  1  Kroger et al. (2002)  Linear Trend Analysis for Relational Complexity  8  7  Kroger et al. (2002)  Linear Trend Analysis for Distractor  8  5  Kroger et al. (2002)  Complexity levels 3–4 Minus Distractor levels 3–4  8  8  Kroger, Nystrom, Cohen, and Johnson-Laird (2008)  Type of Problem (Logic > Calculation)  16  16  Kroger et al. (2008)  Level of Difficulty (Hard > Easy)  16  4  Kroger et al. (2008)  Type × Difficulty Interaction  12  4  Lauro, Tettamanti, Cappa, and Papagno (2008)  Conjunction among all conditions  22  31  Lauro et al. (2008)  Idiomatic > Literal  22  10  Lauro et al. (2008)  Literal > Idiomatic  22  4  Lee and Dapretto (2006)  Nonliteral > Rest  12  20  Lee and Dapretto (2006)  Nonliteral > Literal  12  3  Luo et al. (2003)  Analogy > Semantic Judgment  10  11  Luo et al. (2003)  Event A > Baseline  7  39  Luo et al. (2013)  NSI > OSI  19  1  Luo et al. (2013)  OSI > NSI  19  5  Mashal, Faust, Hendler, and Jung-Beeman (2007)  Novel Metaphors > Unrelated Words  15  15  Mashal et al. (2007)  Conventional Metaphors > Unrelated Words  15  14  Mashal et al. (2007)  Novel Metaphors > Literal Expressions  15  5  Mashal et al. (2007)  Conventional Metaphors > Literal Expressions  15  3  Mashal et al. (2007)  Novel Metaphors > Conventional Metaphors  15  3  Mashal, Faust, Hendler, and Jung-Beeman (2009)  Novel Metaphoric Sentences > Nonsensical Sentences  15  4  Mashal et al. (2009)  Novel Metaphoric Sentences > Literal Sentences  15  1  Monchi, Petrides, Petre, Worsley, and Dagher (2001)  Matching After Negative Feedback minus Control Matching (Increases)  11  6  Monchi et al. (2001)  Receiving Negative Feedback  11  30  Monchi et al. (2001)  Receiving Positive Feedback minus Control Feedback (Increases)  11  4  Monchi et al. (2001)  Matching After Positive Feedback minus Control Matching (Increases)  11  3  Monchi et al. (2001)  Receiving Negative Feedback minus Receiving Positive Feedback  11  9  Monchi et al. (2004)  Receiving Negative Feedback – Control Feedback, Normals  9  17  Monchi et al. (2004)  Matching After Negative Feedback – Control Matching, Normals  9  8  Monchi et al. (2004)  Receiving Positive Feedback – Control Feedback, Normals  9  7  Monchi et al. (2004)  Matching After Positive Feedback – Control Matching, Normals  9  2  Nagahama et al. (2001)  Set Shifting Task  6  14  Nagahama et al. (2001)  Reversal Task  6  13  Nakahara, Hayashi, Konishi, and Miyashita (2002)  Wisconsin Card Sorting Test  10  13  Newman, Willoughby, and Pruce (2011)  Number Easy vs. Fixation  15  9  Newman et al. (2011)  Number Hard vs. Fixation  15  10  Newman et al. (2011)  Word Easy vs. Fixation  15  14  Newman et al. (2011)  Word Hard vs. Fixation  15  17  Newman et al. (2011)  Word > Number  15  10  Newman et al. (2011)  Number > Word  15  6  Newman et al. (2011)  Hard > Easy  15  17  Newman et al. (2011)  Interaction  15  1  Newman et al. (2011)  Number Easy Correlation with Reading Span  15  5  Newman et al. (2011)  Number Hard Correlation with Reading Span  15  11  Newman et al. (2011)  Word Easy Correlation With Reading Span  15  6  Newman et al. (2011)  Word Hard Correlation With Reading Span  15  3  Perfetti et al. (2009)  Activations  8  11  Poldrack, Prabhakaran, Seger, and Gabrieli (1999)  Weather Prediction > Baseline, Activations  8  15  Poldrack et al. (1999)  Learning Related Increases in Activation  8  6  Prado and Noveck (2007)  Verification: 2-Mismatch > 1-Mismatch > 0-Mismatch  20  10  Prado and Noveck (2007)  Falsification: 2-Mismatch > 1-Mismatch > 0-Mismatch  20  6  Prado and Noveck (2007)  Affirmative Throughout: 1-Mismatch > 0-Mismatch  20  16  Prado and Noveck (2007)  Verification, Hits Only: 2-Mismatch > 1-Mismatch > 0-Mismatch  20  14  Preusse, Van Der Meer, Deshpande, Krueger, and Wartenburger (2011)  Task Difficulty (Diagonal > Horizontal > Vertical > Identity)  18  6  Preusse et al. (2011)  HI-FluIQ > AVE-FluIQ  18  2  Preusse et al. (2011)  AVE-FluIQ > HI-FluIQ  18  2  Preusse et al. (2011)  Task Difficulty Fluid Intelligence  18  3  Rao et al. (1997)  Conceptual Reasoning minus Control  11  19  Rapp, Leube, Erb, Grodd, and Kircher (2004)  Metaphoric Sentences > Baseline  15  11  Rapp et al. (2004)  Metaphoric Sentences > Literal Sentences  15  3  Stringaris, Medford, Giampietro, Brammer, and David (2007)  Metaphoric > Literal  11  9  Stringaris et al. (2007)  Metaphoric > Non-Meaningful  11  1  Stringaris et al. (2007)  Non-Meaningful > Metaphoric  11  17  Stringaris et al. (2007)  Literal > Metaphoric  11  7  Stringaris et al. (2006)  Literal Followed by Irrelevant (IRL) > Metaphoric Followed by Irrelevant (IRM)  12  8  Stringaris et al. (2006)  Metaphoric Followed by Irrelevant (IRM) > Literal Followed by Irrelevant (IRL)  12  4  Stringaris et al. (2006)  Literal Followed by Relevant (RL) > Metaphoric Followed by Relevant (RM)  12  4  Stringaris et al. (2006)  Metaphoric Followed by Relevant (RM) > Literal Followed by Relevant (RL)  12  4  Schmidt and Seger (2009)  All Sentences (Literal, Easy-Familiar, Easy-Unfamiliar, Difficult-Unfamiliar) > Non-Word Sentences  10  3  Schmidt and Seger (2009)  Metaphors (Easy-Familiar, Easy-Unfamiliar, Difficult-Unfamiliar) > Literal Sentences  10  6  Schmidt and Seger (2009)  Easy-Familiar Metaphors Literal Sentences >  10  11  Schmidt and Seger (2009)  Familiar Metaphors (Easy-Familiar) > Unfamiliar Metaphors (Easy-Unfamiliar)  10  4  Schmidt and Seger (2009)  Unfamiliar Metaphors (Easy-Unfamiliar) > Familiar Metaphors (Easy-Familiar)  10  2  Schmidt and Seger (2009)  Easy Metaphors (Easy-Unfamiliar) > Difficult Metaphors (Difficult-Unfamiliar)  10  8  Schmidt and Seger (2009)  Difficult Metaphors (Difficult-Unfamiliar) > Easy Metaphors (Easy-Unfamiliar)  10  2  Sebastian et al. (2012)  Affective ToM > PC  15  8  Sebastian et al. (2012)  Cognitive ToM > PC  15  5  Sebastian et al. (2012)  Affective ToM > Cognitive ToM  15  3  Sebastian et al. (2012)  Cognitive ToM > Affective ToM  15  7  Sripada et al. (2009)  Decision-Making Game > Fixation, Healthy Controls  26  9  Ross and Olson (2012)  Fame > No fame  11  10  Ross and Olson (2012)  No fame > Fame  11  7  Tian et al. (2011)  Successful > Unsuccessful Preparation  16  7  Uchiyama et al. (2006)  Sarcasm Detection: Sarcastic plus Non-Sarcastic Responses minus Unconnected  20  10  van den Heuvel and colleagues (2005)  Planning vs. Counting, Normals  22  19  van den Heuvel and colleagues (2005)  Increases Correlating With Increased Task Load, Normals  22  21  Yoshida and Ishii (2006)  Goal-Search Task – Visuomotor Task, Activations  13  8  Yoshida and Ishii (2006)  Correlation between Evoked Activity and Back-Track Probability  13  3  Yoshida and Ishii (2006)  Correlation between Evoked Activity and Expected Hidden Current Position Entropy  13  3  Publication  Paradigm  n  Foci  Acuna, Eliassen, Donoghue, and Sanes (2002)  Transitive Inference – Visual Height Comparison  15  17  Aziz-Zadeh, Wilson, Rizzolatti, and Iacoboni (2006)  Metaphorical Phrases > Literal Phrases  12  2  Aziz-Zadeh et al. (2009)  Aha Solutions > Search Solutions  12  8  Castelli, Happé, Frith, and Frith (2000)  Theory of Mind (ToM) > Random  6  10  Castelli et al. (2000)  Random > ToM  6  1  Castelli et al. (2000)  Correlation: Activation vs. Intentionality Score  6  9  Decety, Jackson, Sommerville, Chaminade, and Meltzoff (2004)  Cooperation vs. Independent  12  8  Decety et al. (2004)  Competition vs. Independent  12  10  Decety et al. (2004)  Cooperation vs. Competition  12  9  Diaz and Hogstrom (2011)  Metaphor > Literal  16  6  Diaz and Hogstrom (2011)  Congruent > Incongruent  16  10  Diaz and Hogstrom (2011)  Incongruent > Congruent  16  3  Ebisch et al. (2012)  High-Fluid Intelligence (Gf) > Low-Gf  10  2  Ebisch et al. (2012)  Induction Conjunction Analysis  10  5  Ebisch et al. (2012)  Visualization Conjunction Analysis  10  3  Fairhall, Anzellotti, Ubaldi, and Caramazza (2014)  Main effect, Person  16  9  Fairhall et al. (2014)  Main effect, Place  16  8  Fairhall et al. (2014)  Category × Task, Person  16  1  Fairhall et al. (2014)  Category × Task, Place  16  4  Fairhall et al. (2014)  Picture-cued Semantic Access, Person  17  9  Fairhall et al. (2014)  Picture-cued Semantic Access, Place  17  8  Fairhall et al. (2014)  Word-cued Semantic Access, Person  17  2  Fairhall et al. (2014)  Word-cued Semantic Access, Place  17  5  Feinstein, Stein, and Paulus (2006)  Action Selection: Uncertain > Certain  16  2  Feinstein et al. (2006)  Action Selection > Outcome  16  2  Fincham et al. (2002)  Planning  8  13  Fletcher et al. (2001)  Decreases in activity during initial learning  12  9  Fletcher et al. (2001)  Main effects of all unpredictable events  12  8  Fletcher et al. (2001)  Modulation of unpredictability-related responses by type of causal relationship  12  5  Fletcher et al. (2001)  Effects of different unpredictable events within the same learning session  12  4  Fukui et al. (2006)  Human–Computer  16  2  Goel and Dolan (2001)  ((Abstract Reasoning + Concrete Reasoning) – (Abstract Baseline + Concrete Baseline))  14  19  Goel and Dolan (2001)  Concrete Reasoning – Concrete Baseline  14  12  Goel and Dolan (2001)  Abstract Reasoning – Abstract Baseline  14  5  Goel and Dolan (2001)  Conjunction (Abstract Reasoning – Abstract Baseline)(Concrete Reasoning – Concrete Baseline)  14  21  Goel and Dolan (2001)  (Abstract Reasoning + Baseline) – (Concrete Reasoning + Baseline)  14  5  Goel and Dolan (2001)  (Concrete Reasoning + Baseline) – (Abstract Reasoning + Baseline)  14  3  Goel and Dolan (2001)  Abstract Reasoning – Concrete Reasoning  14  2  Goel and Dolan (2001)  Concrete Reasoning – Abstract Reasoning  14  3  Grabner et al. (2009)  Procedural > Retrieval  28  9  Grèzes, Frith, and Passingham (2004)  Actions Judged to Reflect Deceptive Intent  11  11  Hampshire, Thompson, Duncan, and Owen (2011)  Peak Activation Coordinates During Reasoning  16  11  Hampshire et al. (2011)  Main Effect of Rule Complexity for Simultaneous Panels  16  9  Hampshire et al. (2011)  Main Effect of Analogical Distance for Simultaneous Panels  16  6  Hampshire et al. (2011)  Rule Complexity – Analogical Distance for Simultaneous Panels  16  9  Hampshire et al. (2011)  Analogical Distance – Rule Complexity for Simultaneous Panels  16  3  Hampshire et al. (2011)  Main Effect of Rule Complexity for Separate Panels  21  5  Hampshire et al. (2011)  Main Effect of Analogical Distance for Separate Panels  21  5  Hargreaves, White, Pexman, Pittman, and Goodyear (2012)  Animal SCT > Concrete SCT  15  16  Hargreaves et al. (2012)  Concrete SCT > Animal SCT  15  3  Herwig et al. (2011)  High Risk > Low Risk, Whole Evaluation Period  18  5  Herwig et al. (2011)  High Risk > Low Risk, First Volume  18  6  Herwig et al. (2011)  High Risk > Low Risk, First Two Volumes  18  13  Jack et al. (2013)  Social > Rest, Mechanical < Rest  45  2  Jack et al. (2013)  Mechanical > Rest, Social < Rest  45  3  Jack et al. (2013)  Social > Mechanical  45  42  Jack et al. (2013)  Mechanical > Social  45  32  Jimura, Konishi, and Miyashita (2004)  Negative - Neutral Feedback  21  15  Kalbfleisch, Van Meter, and Zeffiro (2007)  Areas modulated by task difficulty (Hard > Easy)  14  18  Kalbfleisch et al. (2007)  Areas modulated by response correctness (Correct > incorrect)  14  12  Kalbfleisch et al. (2007)  Areas modulated by task difficulty and correctness interaction  14  1  Konishi et al. (1998)  Three Dimensional – (Two + One Dimensional)  7  5  Konishi et al. (2002)  A Minus B (2 WCST variants)  16  16  Konishi et al. (2002)  B minus C (2 WCST variants)  16  9  Kounios et al. (2006)  Insight preparation > Noninsight Preparation  20  6  Kounios et al. (2006)  Noninsight preparation > Insight preparation Minus Control Feedback (Increases)  20  1  Kroger et al. (2002)  Linear Trend Analysis for Relational Complexity  8  7  Kroger et al. (2002)  Linear Trend Analysis for Distractor  8  5  Kroger et al. (2002)  Complexity levels 3–4 Minus Distractor levels 3–4  8  8  Kroger, Nystrom, Cohen, and Johnson-Laird (2008)  Type of Problem (Logic > Calculation)  16  16  Kroger et al. (2008)  Level of Difficulty (Hard > Easy)  16  4  Kroger et al. (2008)  Type × Difficulty Interaction  12  4  Lauro, Tettamanti, Cappa, and Papagno (2008)  Conjunction among all conditions  22  31  Lauro et al. (2008)  Idiomatic > Literal  22  10  Lauro et al. (2008)  Literal > Idiomatic  22  4  Lee and Dapretto (2006)  Nonliteral > Rest  12  20  Lee and Dapretto (2006)  Nonliteral > Literal  12  3  Luo et al. (2003)  Analogy > Semantic Judgment  10  11  Luo et al. (2003)  Event A > Baseline  7  39  Luo et al. (2013)  NSI > OSI  19  1  Luo et al. (2013)  OSI > NSI  19  5  Mashal, Faust, Hendler, and Jung-Beeman (2007)  Novel Metaphors > Unrelated Words  15  15  Mashal et al. (2007)  Conventional Metaphors > Unrelated Words  15  14  Mashal et al. (2007)  Novel Metaphors > Literal Expressions  15  5  Mashal et al. (2007)  Conventional Metaphors > Literal Expressions  15  3  Mashal et al. (2007)  Novel Metaphors > Conventional Metaphors  15  3  Mashal, Faust, Hendler, and Jung-Beeman (2009)  Novel Metaphoric Sentences > Nonsensical Sentences  15  4  Mashal et al. (2009)  Novel Metaphoric Sentences > Literal Sentences  15  1  Monchi, Petrides, Petre, Worsley, and Dagher (2001)  Matching After Negative Feedback minus Control Matching (Increases)  11  6  Monchi et al. (2001)  Receiving Negative Feedback  11  30  Monchi et al. (2001)  Receiving Positive Feedback minus Control Feedback (Increases)  11  4  Monchi et al. (2001)  Matching After Positive Feedback minus Control Matching (Increases)  11  3  Monchi et al. (2001)  Receiving Negative Feedback minus Receiving Positive Feedback  11  9  Monchi et al. (2004)  Receiving Negative Feedback – Control Feedback, Normals  9  17  Monchi et al. (2004)  Matching After Negative Feedback – Control Matching, Normals  9  8  Monchi et al. (2004)  Receiving Positive Feedback – Control Feedback, Normals  9  7  Monchi et al. (2004)  Matching After Positive Feedback – Control Matching, Normals  9  2  Nagahama et al. (2001)  Set Shifting Task  6  14  Nagahama et al. (2001)  Reversal Task  6  13  Nakahara, Hayashi, Konishi, and Miyashita (2002)  Wisconsin Card Sorting Test  10  13  Newman, Willoughby, and Pruce (2011)  Number Easy vs. Fixation  15  9  Newman et al. (2011)  Number Hard vs. Fixation  15  10  Newman et al. (2011)  Word Easy vs. Fixation  15  14  Newman et al. (2011)  Word Hard vs. Fixation  15  17  Newman et al. (2011)  Word > Number  15  10  Newman et al. (2011)  Number > Word  15  6  Newman et al. (2011)  Hard > Easy  15  17  Newman et al. (2011)  Interaction  15  1  Newman et al. (2011)  Number Easy Correlation with Reading Span  15  5  Newman et al. (2011)  Number Hard Correlation with Reading Span  15  11  Newman et al. (2011)  Word Easy Correlation With Reading Span  15  6  Newman et al. (2011)  Word Hard Correlation With Reading Span  15  3  Perfetti et al. (2009)  Activations  8  11  Poldrack, Prabhakaran, Seger, and Gabrieli (1999)  Weather Prediction > Baseline, Activations  8  15  Poldrack et al. (1999)  Learning Related Increases in Activation  8  6  Prado and Noveck (2007)  Verification: 2-Mismatch > 1-Mismatch > 0-Mismatch  20  10  Prado and Noveck (2007)  Falsification: 2-Mismatch > 1-Mismatch > 0-Mismatch  20  6  Prado and Noveck (2007)  Affirmative Throughout: 1-Mismatch > 0-Mismatch  20  16  Prado and Noveck (2007)  Verification, Hits Only: 2-Mismatch > 1-Mismatch > 0-Mismatch  20  14  Preusse, Van Der Meer, Deshpande, Krueger, and Wartenburger (2011)  Task Difficulty (Diagonal > Horizontal > Vertical > Identity)  18  6  Preusse et al. (2011)  HI-FluIQ > AVE-FluIQ  18  2  Preusse et al. (2011)  AVE-FluIQ > HI-FluIQ  18  2  Preusse et al. (2011)  Task Difficulty Fluid Intelligence  18  3  Rao et al. (1997)  Conceptual Reasoning minus Control  11  19  Rapp, Leube, Erb, Grodd, and Kircher (2004)  Metaphoric Sentences > Baseline  15  11  Rapp et al. (2004)  Metaphoric Sentences > Literal Sentences  15  3  Stringaris, Medford, Giampietro, Brammer, and David (2007)  Metaphoric > Literal  11  9  Stringaris et al. (2007)  Metaphoric > Non-Meaningful  11  1  Stringaris et al. (2007)  Non-Meaningful > Metaphoric  11  17  Stringaris et al. (2007)  Literal > Metaphoric  11  7  Stringaris et al. (2006)  Literal Followed by Irrelevant (IRL) > Metaphoric Followed by Irrelevant (IRM)  12  8  Stringaris et al. (2006)  Metaphoric Followed by Irrelevant (IRM) > Literal Followed by Irrelevant (IRL)  12  4  Stringaris et al. (2006)  Literal Followed by Relevant (RL) > Metaphoric Followed by Relevant (RM)  12  4  Stringaris et al. (2006)  Metaphoric Followed by Relevant (RM) > Literal Followed by Relevant (RL)  12  4  Schmidt and Seger (2009)  All Sentences (Literal, Easy-Familiar, Easy-Unfamiliar, Difficult-Unfamiliar) > Non-Word Sentences  10  3  Schmidt and Seger (2009)  Metaphors (Easy-Familiar, Easy-Unfamiliar, Difficult-Unfamiliar) > Literal Sentences  10  6  Schmidt and Seger (2009)  Easy-Familiar Metaphors Literal Sentences >  10  11  Schmidt and Seger (2009)  Familiar Metaphors (Easy-Familiar) > Unfamiliar Metaphors (Easy-Unfamiliar)  10  4  Schmidt and Seger (2009)  Unfamiliar Metaphors (Easy-Unfamiliar) > Familiar Metaphors (Easy-Familiar)  10  2  Schmidt and Seger (2009)  Easy Metaphors (Easy-Unfamiliar) > Difficult Metaphors (Difficult-Unfamiliar)  10  8  Schmidt and Seger (2009)  Difficult Metaphors (Difficult-Unfamiliar) > Easy Metaphors (Easy-Unfamiliar)  10  2  Sebastian et al. (2012)  Affective ToM > PC  15  8  Sebastian et al. (2012)  Cognitive ToM > PC  15  5  Sebastian et al. (2012)  Affective ToM > Cognitive ToM  15  3  Sebastian et al. (2012)  Cognitive ToM > Affective ToM  15  7  Sripada et al. (2009)  Decision-Making Game > Fixation, Healthy Controls  26  9  Ross and Olson (2012)  Fame > No fame  11  10  Ross and Olson (2012)  No fame > Fame  11  7  Tian et al. (2011)  Successful > Unsuccessful Preparation  16  7  Uchiyama et al. (2006)  Sarcasm Detection: Sarcastic plus Non-Sarcastic Responses minus Unconnected  20  10  van den Heuvel and colleagues (2005)  Planning vs. Counting, Normals  22  19  van den Heuvel and colleagues (2005)  Increases Correlating With Increased Task Load, Normals  22  21  Yoshida and Ishii (2006)  Goal-Search Task – Visuomotor Task, Activations  13  8  Yoshida and Ishii (2006)  Correlation between Evoked Activity and Back-Track Probability  13  3  Yoshida and Ishii (2006)  Correlation between Evoked Activity and Expected Hidden Current Position Entropy  13  3  Note: ToM = Theory of Mind; SCT = Semantic Categorization Task; WCST = Wisconsin Card Sorting Test. Appendix A. Studies included in reasoning Publication  Paradigm  n  Foci  Acuna, Eliassen, Donoghue, and Sanes (2002)  Transitive Inference – Visual Height Comparison  15  17  Aziz-Zadeh, Wilson, Rizzolatti, and Iacoboni (2006)  Metaphorical Phrases > Literal Phrases  12  2  Aziz-Zadeh et al. (2009)  Aha Solutions > Search Solutions  12  8  Castelli, Happé, Frith, and Frith (2000)  Theory of Mind (ToM) > Random  6  10  Castelli et al. (2000)  Random > ToM  6  1  Castelli et al. (2000)  Correlation: Activation vs. Intentionality Score  6  9  Decety, Jackson, Sommerville, Chaminade, and Meltzoff (2004)  Cooperation vs. Independent  12  8  Decety et al. (2004)  Competition vs. Independent  12  10  Decety et al. (2004)  Cooperation vs. Competition  12  9  Diaz and Hogstrom (2011)  Metaphor > Literal  16  6  Diaz and Hogstrom (2011)  Congruent > Incongruent  16  10  Diaz and Hogstrom (2011)  Incongruent > Congruent  16  3  Ebisch et al. (2012)  High-Fluid Intelligence (Gf) > Low-Gf  10  2  Ebisch et al. (2012)  Induction Conjunction Analysis  10  5  Ebisch et al. (2012)  Visualization Conjunction Analysis  10  3  Fairhall, Anzellotti, Ubaldi, and Caramazza (2014)  Main effect, Person  16  9  Fairhall et al. (2014)  Main effect, Place  16  8  Fairhall et al. (2014)  Category × Task, Person  16  1  Fairhall et al. (2014)  Category × Task, Place  16  4  Fairhall et al. (2014)  Picture-cued Semantic Access, Person  17  9  Fairhall et al. (2014)  Picture-cued Semantic Access, Place  17  8  Fairhall et al. (2014)  Word-cued Semantic Access, Person  17  2  Fairhall et al. (2014)  Word-cued Semantic Access, Place  17  5  Feinstein, Stein, and Paulus (2006)  Action Selection: Uncertain > Certain  16  2  Feinstein et al. (2006)  Action Selection > Outcome  16  2  Fincham et al. (2002)  Planning  8  13  Fletcher et al. (2001)  Decreases in activity during initial learning  12  9  Fletcher et al. (2001)  Main effects of all unpredictable events  12  8  Fletcher et al. (2001)  Modulation of unpredictability-related responses by type of causal relationship  12  5  Fletcher et al. (2001)  Effects of different unpredictable events within the same learning session  12  4  Fukui et al. (2006)  Human–Computer  16  2  Goel and Dolan (2001)  ((Abstract Reasoning + Concrete Reasoning) – (Abstract Baseline + Concrete Baseline))  14  19  Goel and Dolan (2001)  Concrete Reasoning – Concrete Baseline  14  12  Goel and Dolan (2001)  Abstract Reasoning – Abstract Baseline  14  5  Goel and Dolan (2001)  Conjunction (Abstract Reasoning – Abstract Baseline)(Concrete Reasoning – Concrete Baseline)  14  21  Goel and Dolan (2001)  (Abstract Reasoning + Baseline) – (Concrete Reasoning + Baseline)  14  5  Goel and Dolan (2001)  (Concrete Reasoning + Baseline) – (Abstract Reasoning + Baseline)  14  3  Goel and Dolan (2001)  Abstract Reasoning – Concrete Reasoning  14  2  Goel and Dolan (2001)  Concrete Reasoning – Abstract Reasoning  14  3  Grabner et al. (2009)  Procedural > Retrieval  28  9  Grèzes, Frith, and Passingham (2004)  Actions Judged to Reflect Deceptive Intent  11  11  Hampshire, Thompson, Duncan, and Owen (2011)  Peak Activation Coordinates During Reasoning  16  11  Hampshire et al. (2011)  Main Effect of Rule Complexity for Simultaneous Panels  16  9  Hampshire et al. (2011)  Main Effect of Analogical Distance for Simultaneous Panels  16  6  Hampshire et al. (2011)  Rule Complexity – Analogical Distance for Simultaneous Panels  16  9  Hampshire et al. (2011)  Analogical Distance – Rule Complexity for Simultaneous Panels  16  3  Hampshire et al. (2011)  Main Effect of Rule Complexity for Separate Panels  21  5  Hampshire et al. (2011)  Main Effect of Analogical Distance for Separate Panels  21  5  Hargreaves, White, Pexman, Pittman, and Goodyear (2012)  Animal SCT > Concrete SCT  15  16  Hargreaves et al. (2012)  Concrete SCT > Animal SCT  15  3  Herwig et al. (2011)  High Risk > Low Risk, Whole Evaluation Period  18  5  Herwig et al. (2011)  High Risk > Low Risk, First Volume  18  6  Herwig et al. (2011)  High Risk > Low Risk, First Two Volumes  18  13  Jack et al. (2013)  Social > Rest, Mechanical < Rest  45  2  Jack et al. (2013)  Mechanical > Rest, Social < Rest  45  3  Jack et al. (2013)  Social > Mechanical  45  42  Jack et al. (2013)  Mechanical > Social  45  32  Jimura, Konishi, and Miyashita (2004)  Negative - Neutral Feedback  21  15  Kalbfleisch, Van Meter, and Zeffiro (2007)  Areas modulated by task difficulty (Hard > Easy)  14  18  Kalbfleisch et al. (2007)  Areas modulated by response correctness (Correct > incorrect)  14  12  Kalbfleisch et al. (2007)  Areas modulated by task difficulty and correctness interaction  14  1  Konishi et al. (1998)  Three Dimensional – (Two + One Dimensional)  7  5  Konishi et al. (2002)  A Minus B (2 WCST variants)  16  16  Konishi et al. (2002)  B minus C (2 WCST variants)  16  9  Kounios et al. (2006)  Insight preparation > Noninsight Preparation  20  6  Kounios et al. (2006)  Noninsight preparation > Insight preparation Minus Control Feedback (Increases)  20  1  Kroger et al. (2002)  Linear Trend Analysis for Relational Complexity  8  7  Kroger et al. (2002)  Linear Trend Analysis for Distractor  8  5  Kroger et al. (2002)  Complexity levels 3–4 Minus Distractor levels 3–4  8  8  Kroger, Nystrom, Cohen, and Johnson-Laird (2008)  Type of Problem (Logic > Calculation)  16  16  Kroger et al. (2008)  Level of Difficulty (Hard > Easy)  16  4  Kroger et al. (2008)  Type × Difficulty Interaction  12  4  Lauro, Tettamanti, Cappa, and Papagno (2008)  Conjunction among all conditions  22  31  Lauro et al. (2008)  Idiomatic > Literal  22  10  Lauro et al. (2008)  Literal > Idiomatic  22  4  Lee and Dapretto (2006)  Nonliteral > Rest  12  20  Lee and Dapretto (2006)  Nonliteral > Literal  12  3  Luo et al. (2003)  Analogy > Semantic Judgment  10  11  Luo et al. (2003)  Event A > Baseline  7  39  Luo et al. (2013)  NSI > OSI  19  1  Luo et al. (2013)  OSI > NSI  19  5  Mashal, Faust, Hendler, and Jung-Beeman (2007)  Novel Metaphors > Unrelated Words  15  15  Mashal et al. (2007)  Conventional Metaphors > Unrelated Words  15  14  Mashal et al. (2007)  Novel Metaphors > Literal Expressions  15  5  Mashal et al. (2007)  Conventional Metaphors > Literal Expressions  15  3  Mashal et al. (2007)  Novel Metaphors > Conventional Metaphors  15  3  Mashal, Faust, Hendler, and Jung-Beeman (2009)  Novel Metaphoric Sentences > Nonsensical Sentences  15  4  Mashal et al. (2009)  Novel Metaphoric Sentences > Literal Sentences  15  1  Monchi, Petrides, Petre, Worsley, and Dagher (2001)  Matching After Negative Feedback minus Control Matching (Increases)  11  6  Monchi et al. (2001)  Receiving Negative Feedback  11  30  Monchi et al. (2001)  Receiving Positive Feedback minus Control Feedback (Increases)  11  4  Monchi et al. (2001)  Matching After Positive Feedback minus Control Matching (Increases)  11  3  Monchi et al. (2001)  Receiving Negative Feedback minus Receiving Positive Feedback  11  9  Monchi et al. (2004)  Receiving Negative Feedback – Control Feedback, Normals  9  17  Monchi et al. (2004)  Matching After Negative Feedback – Control Matching, Normals  9  8  Monchi et al. (2004)  Receiving Positive Feedback – Control Feedback, Normals  9  7  Monchi et al. (2004)  Matching After Positive Feedback – Control Matching, Normals  9  2  Nagahama et al. (2001)  Set Shifting Task  6  14  Nagahama et al. (2001)  Reversal Task  6  13  Nakahara, Hayashi, Konishi, and Miyashita (2002)  Wisconsin Card Sorting Test  10  13  Newman, Willoughby, and Pruce (2011)  Number Easy vs. Fixation  15  9  Newman et al. (2011)  Number Hard vs. Fixation  15  10  Newman et al. (2011)  Word Easy vs. Fixation  15  14  Newman et al. (2011)  Word Hard vs. Fixation  15  17  Newman et al. (2011)  Word > Number  15  10  Newman et al. (2011)  Number > Word  15  6  Newman et al. (2011)  Hard > Easy  15  17  Newman et al. (2011)  Interaction  15  1  Newman et al. (2011)  Number Easy Correlation with Reading Span  15  5  Newman et al. (2011)  Number Hard Correlation with Reading Span  15  11  Newman et al. (2011)  Word Easy Correlation With Reading Span  15  6  Newman et al. (2011)  Word Hard Correlation With Reading Span  15  3  Perfetti et al. (2009)  Activations  8  11  Poldrack, Prabhakaran, Seger, and Gabrieli (1999)  Weather Prediction > Baseline, Activations  8  15  Poldrack et al. (1999)  Learning Related Increases in Activation  8  6  Prado and Noveck (2007)  Verification: 2-Mismatch > 1-Mismatch > 0-Mismatch  20  10  Prado and Noveck (2007)  Falsification: 2-Mismatch > 1-Mismatch > 0-Mismatch  20  6  Prado and Noveck (2007)  Affirmative Throughout: 1-Mismatch > 0-Mismatch  20  16  Prado and Noveck (2007)  Verification, Hits Only: 2-Mismatch > 1-Mismatch > 0-Mismatch  20  14  Preusse, Van Der Meer, Deshpande, Krueger, and Wartenburger (2011)  Task Difficulty (Diagonal > Horizontal > Vertical > Identity)  18  6  Preusse et al. (2011)  HI-FluIQ > AVE-FluIQ  18  2  Preusse et al. (2011)  AVE-FluIQ > HI-FluIQ  18  2  Preusse et al. (2011)  Task Difficulty Fluid Intelligence  18  3  Rao et al. (1997)  Conceptual Reasoning minus Control  11  19  Rapp, Leube, Erb, Grodd, and Kircher (2004)  Metaphoric Sentences > Baseline  15  11  Rapp et al. (2004)  Metaphoric Sentences > Literal Sentences  15  3  Stringaris, Medford, Giampietro, Brammer, and David (2007)  Metaphoric > Literal  11  9  Stringaris et al. (2007)  Metaphoric > Non-Meaningful  11  1  Stringaris et al. (2007)  Non-Meaningful > Metaphoric  11  17  Stringaris et al. (2007)  Literal > Metaphoric  11  7  Stringaris et al. (2006)  Literal Followed by Irrelevant (IRL) > Metaphoric Followed by Irrelevant (IRM)  12  8  Stringaris et al. (2006)  Metaphoric Followed by Irrelevant (IRM) > Literal Followed by Irrelevant (IRL)  12  4  Stringaris et al. (2006)  Literal Followed by Relevant (RL) > Metaphoric Followed by Relevant (RM)  12  4  Stringaris et al. (2006)  Metaphoric Followed by Relevant (RM) > Literal Followed by Relevant (RL)  12  4  Schmidt and Seger (2009)  All Sentences (Literal, Easy-Familiar, Easy-Unfamiliar, Difficult-Unfamiliar) > Non-Word Sentences  10  3  Schmidt and Seger (2009)  Metaphors (Easy-Familiar, Easy-Unfamiliar, Difficult-Unfamiliar) > Literal Sentences  10  6  Schmidt and Seger (2009)  Easy-Familiar Metaphors Literal Sentences >  10  11  Schmidt and Seger (2009)  Familiar Metaphors (Easy-Familiar) > Unfamiliar Metaphors (Easy-Unfamiliar)  10  4  Schmidt and Seger (2009)  Unfamiliar Metaphors (Easy-Unfamiliar) > Familiar Metaphors (Easy-Familiar)  10  2  Schmidt and Seger (2009)  Easy Metaphors (Easy-Unfamiliar) > Difficult Metaphors (Difficult-Unfamiliar)  10  8  Schmidt and Seger (2009)  Difficult Metaphors (Difficult-Unfamiliar) > Easy Metaphors (Easy-Unfamiliar)  10  2  Sebastian et al. (2012)  Affective ToM > PC  15  8  Sebastian et al. (2012)  Cognitive ToM > PC  15  5  Sebastian et al. (2012)  Affective ToM > Cognitive ToM  15  3  Sebastian et al. (2012)  Cognitive ToM > Affective ToM  15  7  Sripada et al. (2009)  Decision-Making Game > Fixation, Healthy Controls  26  9  Ross and Olson (2012)  Fame > No fame  11  10  Ross and Olson (2012)  No fame > Fame  11  7  Tian et al. (2011)  Successful > Unsuccessful Preparation  16  7  Uchiyama et al. (2006)  Sarcasm Detection: Sarcastic plus Non-Sarcastic Responses minus Unconnected  20  10  van den Heuvel and colleagues (2005)  Planning vs. Counting, Normals  22  19  van den Heuvel and colleagues (2005)  Increases Correlating With Increased Task Load, Normals  22  21  Yoshida and Ishii (2006)  Goal-Search Task – Visuomotor Task, Activations  13  8  Yoshida and Ishii (2006)  Correlation between Evoked Activity and Back-Track Probability  13  3  Yoshida and Ishii (2006)  Correlation between Evoked Activity and Expected Hidden Current Position Entropy  13  3  Publication  Paradigm  n  Foci  Acuna, Eliassen, Donoghue, and Sanes (2002)  Transitive Inference – Visual Height Comparison  15  17  Aziz-Zadeh, Wilson, Rizzolatti, and Iacoboni (2006)  Metaphorical Phrases > Literal Phrases  12  2  Aziz-Zadeh et al. (2009)  Aha Solutions > Search Solutions  12  8  Castelli, Happé, Frith, and Frith (2000)  Theory of Mind (ToM) > Random  6  10  Castelli et al. (2000)  Random > ToM  6  1  Castelli et al. (2000)  Correlation: Activation vs. Intentionality Score  6  9  Decety, Jackson, Sommerville, Chaminade, and Meltzoff (2004)  Cooperation vs. Independent  12  8  Decety et al. (2004)  Competition vs. Independent  12  10  Decety et al. (2004)  Cooperation vs. Competition  12  9  Diaz and Hogstrom (2011)  Metaphor > Literal  16  6  Diaz and Hogstrom (2011)  Congruent > Incongruent  16  10  Diaz and Hogstrom (2011)  Incongruent > Congruent  16  3  Ebisch et al. (2012)  High-Fluid Intelligence (Gf) > Low-Gf  10  2  Ebisch et al. (2012)  Induction Conjunction Analysis  10  5  Ebisch et al. (2012)  Visualization Conjunction Analysis  10  3  Fairhall, Anzellotti, Ubaldi, and Caramazza (2014)  Main effect, Person  16  9  Fairhall et al. (2014)  Main effect, Place  16  8  Fairhall et al. (2014)  Category × Task, Person  16  1  Fairhall et al. (2014)  Category × Task, Place  16  4  Fairhall et al. (2014)  Picture-cued Semantic Access, Person  17  9  Fairhall et al. (2014)  Picture-cued Semantic Access, Place  17  8  Fairhall et al. (2014)  Word-cued Semantic Access, Person  17  2  Fairhall et al. (2014)  Word-cued Semantic Access, Place  17  5  Feinstein, Stein, and Paulus (2006)  Action Selection: Uncertain > Certain  16  2  Feinstein et al. (2006)  Action Selection > Outcome  16  2  Fincham et al. (2002)  Planning  8  13  Fletcher et al. (2001)  Decreases in activity during initial learning  12  9  Fletcher et al. (2001)  Main effects of all unpredictable events  12  8  Fletcher et al. (2001)  Modulation of unpredictability-related responses by type of causal relationship  12  5  Fletcher et al. (2001)  Effects of different unpredictable events within the same learning session  12  4  Fukui et al. (2006)  Human–Computer  16  2  Goel and Dolan (2001)  ((Abstract Reasoning + Concrete Reasoning) – (Abstract Baseline + Concrete Baseline))  14  19  Goel and Dolan (2001)  Concrete Reasoning – Concrete Baseline  14  12  Goel and Dolan (2001)  Abstract Reasoning – Abstract Baseline  14  5  Goel and Dolan (2001)  Conjunction (Abstract Reasoning – Abstract Baseline)(Concrete Reasoning – Concrete Baseline)  14  21  Goel and Dolan (2001)  (Abstract Reasoning + Baseline) – (Concrete Reasoning + Baseline)  14  5  Goel and Dolan (2001)  (Concrete Reasoning + Baseline) – (Abstract Reasoning + Baseline)  14  3  Goel and Dolan (2001)  Abstract Reasoning – Concrete Reasoning  14  2  Goel and Dolan (2001)  Concrete Reasoning – Abstract Reasoning  14  3  Grabner et al. (2009)  Procedural > Retrieval  28  9  Grèzes, Frith, and Passingham (2004)  Actions Judged to Reflect Deceptive Intent  11  11  Hampshire, Thompson, Duncan, and Owen (2011)  Peak Activation Coordinates During Reasoning  16  11  Hampshire et al. (2011)  Main Effect of Rule Complexity for Simultaneous Panels  16  9  Hampshire et al. (2011)  Main Effect of Analogical Distance for Simultaneous Panels  16  6  Hampshire et al. (2011)  Rule Complexity – Analogical Distance for Simultaneous Panels  16  9  Hampshire et al. (2011)  Analogical Distance – Rule Complexity for Simultaneous Panels  16  3  Hampshire et al. (2011)  Main Effect of Rule Complexity for Separate Panels  21  5  Hampshire et al. (2011)  Main Effect of Analogical Distance for Separate Panels  21  5  Hargreaves, White, Pexman, Pittman, and Goodyear (2012)  Animal SCT > Concrete SCT  15  16  Hargreaves et al. (2012)  Concrete SCT > Animal SCT  15  3  Herwig et al. (2011)  High Risk > Low Risk, Whole Evaluation Period  18  5  Herwig et al. (2011)  High Risk > Low Risk, First Volume  18  6  Herwig et al. (2011)  High Risk > Low Risk, First Two Volumes  18  13  Jack et al. (2013)  Social > Rest, Mechanical < Rest  45  2  Jack et al. (2013)  Mechanical > Rest, Social < Rest  45  3  Jack et al. (2013)  Social > Mechanical  45  42  Jack et al. (2013)  Mechanical > Social  45  32  Jimura, Konishi, and Miyashita (2004)  Negative - Neutral Feedback  21  15  Kalbfleisch, Van Meter, and Zeffiro (2007)  Areas modulated by task difficulty (Hard > Easy)  14  18  Kalbfleisch et al. (2007)  Areas modulated by response correctness (Correct > incorrect)  14  12  Kalbfleisch et al. (2007)  Areas modulated by task difficulty and correctness interaction  14  1  Konishi et al. (1998)  Three Dimensional – (Two + One Dimensional)  7  5  Konishi et al. (2002)  A Minus B (2 WCST variants)  16  16  Konishi et al. (2002)  B minus C (2 WCST variants)  16  9  Kounios et al. (2006)  Insight preparation > Noninsight Preparation  20  6  Kounios et al. (2006)  Noninsight preparation > Insight preparation Minus Control Feedback (Increases)  20  1  Kroger et al. (2002)  Linear Trend Analysis for Relational Complexity  8  7  Kroger et al. (2002)  Linear Trend Analysis for Distractor  8  5  Kroger et al. (2002)  Complexity levels 3–4 Minus Distractor levels 3–4  8  8  Kroger, Nystrom, Cohen, and Johnson-Laird (2008)  Type of Problem (Logic > Calculation)  16  16  Kroger et al. (2008)  Level of Difficulty (Hard > Easy)  16  4  Kroger et al. (2008)  Type × Difficulty Interaction  12  4  Lauro, Tettamanti, Cappa, and Papagno (2008)  Conjunction among all conditions  22  31  Lauro et al. (2008)  Idiomatic > Literal  22  10  Lauro et al. (2008)  Literal > Idiomatic  22  4  Lee and Dapretto (2006)  Nonliteral > Rest  12  20  Lee and Dapretto (2006)  Nonliteral > Literal  12  3  Luo et al. (2003)  Analogy > Semantic Judgment  10  11  Luo et al. (2003)  Event A > Baseline  7  39  Luo et al. (2013)  NSI > OSI  19  1  Luo et al. (2013)  OSI > NSI  19  5  Mashal, Faust, Hendler, and Jung-Beeman (2007)  Novel Metaphors > Unrelated Words  15  15  Mashal et al. (2007)  Conventional Metaphors > Unrelated Words  15  14  Mashal et al. (2007)  Novel Metaphors > Literal Expressions  15  5  Mashal et al. (2007)  Conventional Metaphors > Literal Expressions  15  3  Mashal et al. (2007)  Novel Metaphors > Conventional Metaphors  15  3  Mashal, Faust, Hendler, and Jung-Beeman (2009)  Novel Metaphoric Sentences > Nonsensical Sentences  15  4  Mashal et al. (2009)  Novel Metaphoric Sentences > Literal Sentences  15  1  Monchi, Petrides, Petre, Worsley, and Dagher (2001)  Matching After Negative Feedback minus Control Matching (Increases)  11  6  Monchi et al. (2001)  Receiving Negative Feedback  11  30  Monchi et al. (2001)  Receiving Positive Feedback minus Control Feedback (Increases)  11  4  Monchi et al. (2001)  Matching After Positive Feedback minus Control Matching (Increases)  11  3  Monchi et al. (2001)  Receiving Negative Feedback minus Receiving Positive Feedback  11  9  Monchi et al. (2004)  Receiving Negative Feedback – Control Feedback, Normals  9  17  Monchi et al. (2004)  Matching After Negative Feedback – Control Matching, Normals  9  8  Monchi et al. (2004)  Receiving Positive Feedback – Control Feedback, Normals  9  7  Monchi et al. (2004)  Matching After Positive Feedback – Control Matching, Normals  9  2  Nagahama et al. (2001)  Set Shifting Task  6  14  Nagahama et al. (2001)  Reversal Task  6  13  Nakahara, Hayashi, Konishi, and Miyashita (2002)  Wisconsin Card Sorting Test  10  13  Newman, Willoughby, and Pruce (2011)  Number Easy vs. Fixation  15  9  Newman et al. (2011)  Number Hard vs. Fixation  15  10  Newman et al. (2011)  Word Easy vs. Fixation  15  14  Newman et al. (2011)  Word Hard vs. Fixation  15  17  Newman et al. (2011)  Word > Number  15  10  Newman et al. (2011)  Number > Word  15  6  Newman et al. (2011)  Hard > Easy  15  17  Newman et al. (2011)  Interaction  15  1  Newman et al. (2011)  Number Easy Correlation with Reading Span  15  5  Newman et al. (2011)  Number Hard Correlation with Reading Span  15  11  Newman et al. (2011)  Word Easy Correlation With Reading Span  15  6  Newman et al. (2011)  Word Hard Correlation With Reading Span  15  3  Perfetti et al. (2009)  Activations  8  11  Poldrack, Prabhakaran, Seger, and Gabrieli (1999)  Weather Prediction > Baseline, Activations  8  15  Poldrack et al. (1999)  Learning Related Increases in Activation  8  6  Prado and Noveck (2007)  Verification: 2-Mismatch > 1-Mismatch > 0-Mismatch  20  10  Prado and Noveck (2007)  Falsification: 2-Mismatch > 1-Mismatch > 0-Mismatch  20  6  Prado and Noveck (2007)  Affirmative Throughout: 1-Mismatch > 0-Mismatch  20  16  Prado and Noveck (2007)  Verification, Hits Only: 2-Mismatch > 1-Mismatch > 0-Mismatch  20  14  Preusse, Van Der Meer, Deshpande, Krueger, and Wartenburger (2011)  Task Difficulty (Diagonal > Horizontal > Vertical > Identity)  18  6  Preusse et al. (2011)  HI-FluIQ > AVE-FluIQ  18  2  Preusse et al. (2011)  AVE-FluIQ > HI-FluIQ  18  2  Preusse et al. (2011)  Task Difficulty Fluid Intelligence  18  3  Rao et al. (1997)  Conceptual Reasoning minus Control  11  19  Rapp, Leube, Erb, Grodd, and Kircher (2004)  Metaphoric Sentences > Baseline  15  11  Rapp et al. (2004)  Metaphoric Sentences > Literal Sentences  15  3  Stringaris, Medford, Giampietro, Brammer, and David (2007)  Metaphoric > Literal  11  9  Stringaris et al. (2007)  Metaphoric > Non-Meaningful  11  1  Stringaris et al. (2007)  Non-Meaningful > Metaphoric  11  17  Stringaris et al. (2007)  Literal > Metaphoric  11  7  Stringaris et al. (2006)  Literal Followed by Irrelevant (IRL) > Metaphoric Followed by Irrelevant (IRM)  12  8  Stringaris et al. (2006)  Metaphoric Followed by Irrelevant (IRM) > Literal Followed by Irrelevant (IRL)  12  4  Stringaris et al. (2006)  Literal Followed by Relevant (RL) > Metaphoric Followed by Relevant (RM)  12  4  Stringaris et al. (2006)  Metaphoric Followed by Relevant (RM) > Literal Followed by Relevant (RL)  12  4  Schmidt and Seger (2009)  All Sentences (Literal, Easy-Familiar, Easy-Unfamiliar, Difficult-Unfamiliar) > Non-Word Sentences  10  3  Schmidt and Seger (2009)  Metaphors (Easy-Familiar, Easy-Unfamiliar, Difficult-Unfamiliar) > Literal Sentences  10  6  Schmidt and Seger (2009)  Easy-Familiar Metaphors Literal Sentences >  10  11  Schmidt and Seger (2009)  Familiar Metaphors (Easy-Familiar) > Unfamiliar Metaphors (Easy-Unfamiliar)  10  4  Schmidt and Seger (2009)  Unfamiliar Metaphors (Easy-Unfamiliar) > Familiar Metaphors (Easy-Familiar)  10  2  Schmidt and Seger (2009)  Easy Metaphors (Easy-Unfamiliar) > Difficult Metaphors (Difficult-Unfamiliar)  10  8  Schmidt and Seger (2009)  Difficult Metaphors (Difficult-Unfamiliar) > Easy Metaphors (Easy-Unfamiliar)  10  2  Sebastian et al. (2012)  Affective ToM > PC  15  8  Sebastian et al. (2012)  Cognitive ToM > PC  15  5  Sebastian et al. (2012)  Affective ToM > Cognitive ToM  15  3  Sebastian et al. (2012)  Cognitive ToM > Affective ToM  15  7  Sripada et al. (2009)  Decision-Making Game > Fixation, Healthy Controls  26  9  Ross and Olson (2012)  Fame > No fame  11  10  Ross and Olson (2012)  No fame > Fame  11  7  Tian et al. (2011)  Successful > Unsuccessful Preparation  16  7  Uchiyama et al. (2006)  Sarcasm Detection: Sarcastic plus Non-Sarcastic Responses minus Unconnected  20  10  van den Heuvel and colleagues (2005)  Planning vs. Counting, Normals  22  19  van den Heuvel and colleagues (2005)  Increases Correlating With Increased Task Load, Normals  22  21  Yoshida and Ishii (2006)  Goal-Search Task – Visuomotor Task, Activations  13  8  Yoshida and Ishii (2006)  Correlation between Evoked Activity and Back-Track Probability  13  3  Yoshida and Ishii (2006)  Correlation between Evoked Activity and Expected Hidden Current Position Entropy  13  3  Note: ToM = Theory of Mind; SCT = Semantic Categorization Task; WCST = Wisconsin Card Sorting Test. Appendix B. Studies included in inhibition control Publication  Paradigm  n  Foci  Altshuler et al. (2005)  NoGo > Go, Normals  13  4  Aron and Poldrack (2006)  Stop – Go  5  35  Aron and Poldrack (2006)  Stop Inhibit – Stop Respond  5  13  Asahi, Okamoto, Okada, Yamawaki, and Yokota (2004)  Response Inhibition  17  11  Baglio et al. (2011)  NoGo vs. Fixation, Healthy Controls  11  5  Bellgrove, Hester, and Garavan (2004)  Response Inhibition  42  19  Bennett et al. (2009)  No/Go – Go, Non-Exposed, Correct Trials  11  8  Bonnet et al. (2009)  Initial Go/No-go > Tonic Alertness  20  3  Bonnet et al. (2009)  Complex Go/No-go > Initial Go/No-go  20  1  Bonnet et al. (2009)  Complex Go/No-go > Tonic Alertness  20  5  Bonnet et al. (2009)  Positive Correlation between Activation During Tonic Alertness and Response Time  19  6  Bonnet et al. (2009)  Positive Correlation between Activation During Initial Go/No-go and Response Time  19  2  Bonnet et al. (2009)  Positive Correlation between Activation During Reversal Go/No-go and Response Time  19  1  Bonnet et al. (2009)  Positive Correlation between Activation During Complex Go/No-go and Response Time  19  1  Bonnet et al. (2009)  Negative Correlation between Activation During Initial Go/No-go and Response Time  19  1  Bonnet et al. (2009)  Negative Correlation between Activation During Reversal Go/No-go and Response Time  19  1  Bonnet et al. (2009)  Positive Correlation between Activation During Initial Go/No-go and Education Level  20  3  Bonnet et al. (2009)  Positive Correlation between Activation During Reversal Go/No-go and Education Level  20  2  Bonnet et al. (2009)  Positive Correlation between Activation During Complex Go/No-go and Education Level  20  1  Bonnet et al. (2009)  Negative Correlation between Activation During Tonic Alertness and Education Level  20  1  Bonnet et al. (2009)  Negative Correlation between Activation During Complex Go/No-go and Education Level  20  2  Braver, Barch, Gray, Molfese, and Snyder (2001)  Conjunction Analysis  14  9  Braver et al. (2001)  Disjunction Analysis  14  19  Brown, Goltz, Vilis, Ford, and Everling (2006)  Antisaccade Response > Fixation  10  20  Brown et al. (2006)  Nogo Response > Fixation  10  19  Brown et al. (2006)  Antisaccade Response > Prosaccade Response  10  15  Brown et al. (2006)  Antisaccade Response > Nogo Response  10  16  Brown, Vilis, and Everling (2007)  Response, Antisaccade – Preparation, Antisaccade  11  11  Chevrier and Schachar (2010)  Post-Error Slowing Activations  14  16  Chevrier, Noseworthy, and Schachar (2007)  Successful Stop-Phase Activities  14  3  Chevrier et al. (2007)  Unsuccessful Stop-Phase Activities  14  10  Chikazoe, Konishi, Asari, Jimura, and Miyashita (2007)  Antisaccade – Control Saccade  24  54  Chikazoe et al. (2009)  Stop vs. Uncertain-Go  22  57  Chikazoe et al. (2009)  Uncertain-Go vs. Certain-Go  22  8  Chikazoe et al. (2009)  Conjunction Analysis, Stop vs. Uncertain-Go + Uncertain-Go vs. Certain-Go  22  19  Chikazoe et al. (2009)  Disjunction Analysis, Stop vs. Uncertain-Go but not Uncertain-Go vs. Certain-Go  22  16  Chikazoe et al. (2009)  No-Go vs. Frequent-Go  25  52  Chikazoe et al. (2009)  No-Go vs. Infrequent-Go  25  52  Connolly et al. (2000)  Anti-Saccade vs. Fixation  7  13  Connolly and colleagues (2000)  Anti-Pointing vs. Fixation  7  20  Cross, Schmitt, and Grafton (2007)  Activity during Movement Preparation (NoGo)  13  26  Cross et al. (2007)  Study Time: Random Increasing (Early > Late) > Block Increasing (Early > Late)  13  4  Cross et al. (2007)  Study Time: Block Increasing (Early > Late) > Random Increasing (Early > Late)  13  2  DeSouza, Menon, and Everling (2003)  Selectively Activated for Saccades (Both Pro and Anti)  10  9  Duka (2011)  A+ or B+ vs. C-– or D–, Reward vs. Non Reward  8  11  Duka (2011)  (AB–) – (CD–), Incentive Conflict  8  6  Duka (2011)  (A–) – (A+), Reversal  8  2  Duka (2011)  (A+) – (A–), Reversal  8  1  Durston et al. (2003)  Go > No Go, Healthy Controls  7  8  Durston (2006)  Go > No-Go, Healthy Controls  11  2  Durston (2006)  No-Go > Go, Healthy Controls  11  9  Durston (2006)  Parametric effect of preceding number of Go Trials, Healthy Controls  11  3  Durston, Thomas, Worden, Yang, and Casey (2002)  Go vs. No-Go  10  10  Ettinger et al. (2008)  Standard Antisaccade  17  15  Ettinger et al. (2008)  Saccade-by-Delay Interaction  17  15  Evers et al. (2006)  NoGO Inhibition vs. Go, Experimental Session  13  17  Falconer (2008)  No Go – Go, Normals  23  6  Fassbender et al. (2004)  Tonic Activations for Fixed and Random SART  21  21  Fassbender et al. (2004)  Activations For Correct Inhibitions  21  8  Fassbender et al. (2004)  Activations For Commission Errors  21  12  Finger, Mitchell, Jones, and Blair (2008)  Successful Extinction > Successful Baseline (Control)  19  3  Finger et al. (2008)  Correct Hits > Correct Avoidance  19  6  Finger et al. (2008)  Early Extinction Phase > Late Extinction Phase  19  8  Finger et al. (2008)  Extinction > Baseline (Control)  19  2  Finger et al. (2008)  Response Type × Phase  19  2  Finger et al. (2008)  Response × Pair  19  1  Finger et al. (2008)  Response × Phase × Pair  19  1  Ford, Goltz, Brown, and Everling (2005)  Late preparatory period comparison: Anti vs. Pro  10  8  Ford et al. (2005)  Late preparatory period comparison: Correct Anti vs. Error Anti  10  3  Ford et al. (2005)  Late preparatory period comparison: Error Anti vs. Correct Anti  10  2  Ford et al. (2005)  Saccade period comparison: Error Anti vs. Correct Anti  10  1  Garavan et al. (2002)  Successful NoGos  14  16  Garavan et al. (2002)  Errors  14  15  Garavan et al. (1999)  Response Inhibition  14  14  Garavan, Ross, Kaufman, and Stein (2003)  Task-related Performance  16  12  Garavan et al. (2003)  Event-related STOPS  16  7  Garavan et al. (2003)  Event-related ERRORS  16  5  Goldin, McRae, Ramel, and Gross (2008)  Suppress > Watch, Negative  17  17  Goldin et al. (2008)  Suppress > Reappraise  17  15  Harenski (2006)  Decrease, Moral > Number Discrimination  10  12  Harenski (2006)  Decrease, Non-moral > Number Discrimination  10  10  Harenski (2006)  Decrease, Moral > Watch, Moral  10  7  Harenski (2006)  Decrease, Moral > Decrease, Non-moral  10  13  Harenski (2006)  Decrease, Non-moral > Decrease, Moral  10  1  Hester et al. (2004)  Cued and Uncued Successful Response Inhibition  15  21  Hester et al. (2004)  Cued vs. Uncued, Increases  15  10  Horn, Dolan, Elliott, Deakin, and Woodruff (2003)  Go/No-Go > Go  21  14  Johnson-Frey, Newman-Norlund, and Grafton (2005)  Tool, No Go, Right > Move, No Go, Right  13  26  Johnson-Frey et al. (2005)  Tool, No Go, Left > Move, No Go, Left  13  13  Johnson-Frey et al. (2005)  (Tool, No Go, Right > Move, No Go, Right) + (Tool, No Go, Left > Move, No Go, Left)  13  15  Kaladjian et al. (2009a)  No Go vs. Go, Healthy Controls, T1  10  12  Kaladjian et al. (2009a)  No Go vs. Go, Healthy Controls, T2  10  8  Kaladjian et al. (2009b)  NoGo > Go, Correct Responses, Healthy Controls  20  16  Kaladjian et al. (2007)  Correct NoGo Trials vs. Correct Go Trials, Healthy Controls  21  11  Kelly et al. (2004)  Fast and Slow Successful Response Inhibitions  15  23  Kiehl, Liddle, and Hopfinger (2000)  Task 1, Errors of Commission  14  4  Kiehl et al. (2000)  Task 1, Correct Rejects  14  8  Kiehl et al. (2000)  Task 1, Errors of Commission vs. Correct Rejects  14  2  Kiehl et al. (2000)  Task 2, Correct Hits  14  12  Kimmig et al. (2001)  Pro-Saccade and Anti-Saccade  15  12  Konishi et al. (1998)  No-Go Dominant Foci  5  19  Konishi, Jimura, Asari, and Miyashita (2003)  Inhibition – Control, No Additional Task Knowledge  36  16  Konishi et al. (2003)  Inhibition – Control, Additional Task Knowledge  16  21  Konishi et al. (1999)  No-Go Dominant Area  6  1  Langenecker et al. (2007)  Activation in Response to Targets, Healthy Controls  17  10  Langenecker et al. (2007)  Activation in Response to Correct Rejections, Healthy Controls  17  8  Langenecker et al. (2007)  Activation in Response to Commissions, Healthy Controls  17  5  Li et al. (2008)  Stop Errors > Stop Successes  40  12  Li et al. (2008)  Post-Stop Successes Go > Post-Stop Errors Go  40  17  Li, Chao, and Lee (2009)  Increased Reaction Time vs. Decreased Reaction Time, Go-Trial  33  20  Liddle, Kiehl, and Smith (2001)  Correct NoGo – Baseline  16  19  Liddle et al. (2001)  Correct NoGo – Go  16  23  MacDonald, Carter, Kerns, Ursu, and Barch (2005)  Non-Target vs. Target, Normals  28  4  MacDonald et al. (2005)  Long vs. Short Delay, Normals  28  1  MacDonald and Carter (2003)  Main Effect of Scan, Normals  17  6  MacDonald and Carter (2003)  Cue by Scan Interaction, Normals  17  1  Maguire et al. (2003)  Go/No-Go vs. Fixation  6  10  Maguire et al. (2003)  Go/No-Go vs. Go  6  6  Maltby, Tolin, Worhunsky, O’Keefe, and Kiehl (2005)  Correct Inhibition, Normals  14  5  Matsuda et al. (2004)  Anti-Saccades vs. Rest  21  17  Matsuda et al. (2004)  Anti-Saccades > Saccades  21  12  McNab et al. (2008)  No-Go > Oddball (Go/No-Go)  11  18  McNab et al. (2008)  No-Go > Go  11  6  McNab et al. (2008)  Stop > Oddball (Stop Task)  11  25  McNab et al. (2008)  Stop > Go  11  16  McNab et al. (2008)  Go/No-Go and Stop Tasks w/ Oddball  11  7  McNab et al. (2008)  Go/No-Go and Stop Tasks  11  6  McNab et al. (2008)  Flanker Task and both Working Memory Tasks  11  2  McNab et al. (2008)  Go/No-Go and both Memory Working Tasks  11  2  McNab et al. (2008)  Stop Task and both Working Memory Tasks  11  12  Mechelli, Viding, Pettersson‐Yeo, Tognin, and McGuire (2009)  Go/Nogo > Fixation  7  16  Mechelli et al. (2009)  Nogo > Go  7  8  Mechelli et al. (2009)  Go > Nogo  7  8  Mechelli et al. (2009)  Go/Nogo, CT and TT Variants > CC Variant  7  1  Mechelli et al. (2009)  Effect of twin pairs: Go/Nogo, CT and TT Variants > CC Variant  60  1  Menon, Adleman, White, Glover, and Reiss (2001)  Incorrect NoGo – Correct NoGo  14  4  Menon et al. (2001)  Go/NoGo – Go  14  13  Mostofsky et al. (2003)  Primary No-Go Effects  48  3  Mostofsky et al. (2003)  Primary Counting No-Go Effects  28  3  Mulder et al. (2008)  Unexpected Stimulus, Expected Time, Healthy Controls  12  6  Mulder et al. (2008)  Expected Stimulus, Unexpected Time, Healthy Controls  12  4  Mulder et al. (2008)  Unexpected Stimulus, Unexpected Time, Healthy Controls  12  6  Pavuluri, Passarotti, Harral, and Sweeney (2010)  Stop vs. Go, Healthy Controls, Follow-Up > Baseline  13  6  Pessiglione, Seymour, Flandin, Dolan, and Frith (2006)  Reward Prediction Error, Positive Correlations  39  2  Pessiglione et al. (2006)  Punishment Prediction Error, Negative Correlations  39  1  Pessiglione et al. (2006)  Stimulus Related Activity, Go/NoGo  39  7  Pessiglione et al. (2006)  Stimulus Related Activity, (Go/NoGo Gain) – (Go/NoGo Neutral)  39  1  Pessiglione et al. (2006)  Stimulus Related Activity, (Go/NoGo Loss) – (Go/NoGo Neutral)  39  1  Pompei et al. (2011)  Main Effect of Group: Interference minus Neutral  14  6  Pompei et al. (2011)  Interference minus Neutral, Healthy Controls  48  9  Rubia et al. (2001)  Generic Go/No-Go Activation  15  12  Rubia et al. (2001)  Generic Stop Activation  15  6  Rubia et al. (2001)  Activation Common to All Go/No-Go and Stop Task Versions  15  9  Rubia et al. (2001)  Differences Between Generic Go/No-Go and Stop Task Activations  15  3  Rubia, Smith, Brammer, and Taylor (2003)  NoGo, Successful Inhibition – NoGo, Unsuccessful Inhibition  20  2  Rubia et al. (2003)  NoGo, Unsuccessful Inhibition – Go Response  20  4  Rubia et al. (2006)  Go/NoGo Task, Adults  23  11  Rubia et al. (2006)  Go/NoGo Task, Adolescents  29  4  Rubia et al. (2006)  Go/NoGo Task, Adults > Adolescents  23  1  Rubia et al. (2006)  Go/NoGo Task, Positive Correlations with Age  23  3  Schiffer (2014)  Conflict-related activity (Incongruent–Congruent)  21  11  Schiffer (2014)  Error-related activity (All error trials–accurate Congruent trials)  21  8  Shane, Stevens, Harenski, and Kiehl (2008)  Errors > Correct Responses, Performance Go and NoGo  21  13  Shane et al. (2008)  Errors > Successful Inhibitions  21  8  Shane et al. (2008)  Observed Errors > Observed Correct Responses  21  19  Shane et al. (2008)  Observed Errors > Observed Correct Inhibitions  21  4  Shane et al. (2008)  Observed Errors vs. Performed Errors  21  14  Simmonds et al. (2007)  No-Go Activations  30  10  Simmonds et al. (2007)  No-Go Activations Negatively Correlated with Intraindividual Coefficient of Variability  30  5  Simmonds et al. (2007)  No-Go Activations Positively Correlated with Intraindividual Coefficient of Variability  30  3  Sylvester et al. (2003)  Switching and Inhibition  14  4  Sylvester et al. (2003)  Inhibition > Switching  14  5  Tamm, Menon, and Reiss (2002)  Go/NoGo - Go, Developing Controls  19  4  Townsend et al. (2012)  NoGo minus Go, Healthy Controls  30  24  Ungar, Nestor, Niznikiewicz, Wible, and Kubicki (2010)  Negative Priming: Incongruent Non-Primed vs. Primed, Healthy Controls  15  1  Vink et al. (2005)  Go/Stop and Go Only  20  4  Vink et al. (2005)  Go/Stop > Go Only  20  4  Vink et al. (2005)  Parametric Analysis  20  4  Vink et al. (2005)  Correct vs. Incorrect Stop  20  2  Watanabe et al. (2002)  Areas Activated During NO-GO Phase  11  5  Watanabe et al. (2002)  Specific Activation Areas During NO-GO Phase  11  4  Wood, Romero, Makale, and Grafman (2003)  Social SEC vs. Control  20  3  Wood et al. (2003)  Nonsocial SEC vs. Control  20  3  Wood et al. (2003)  Social Semantic vs. Control  20  6  Wood et al. (2003)  Nonsocial Semantic vs. Control  20  2  Zheng, Oka, Bokura, and Yamaguchi (2008)  No-Go – Go (Go/No-Go)  18  8  Zheng et al. (2008)  Stop – Go (Stop Signal)  18  10  De Zubicaray, Andrew, Zelaya, Williams, and Dumanoir (2000)  Increases  8  15  De Zubicaray and colleagues (2000)  Linear Increases With Number of Trials Equated Per Block  8  11  van Veen and Carter (2005)  Semantically Incongruent > Congruent  14  6  van Veen and Carter (2005)  Response-Incongruent > Semantically Incongruent  14  7  Publication  Paradigm  n  Foci  Altshuler et al. (2005)  NoGo > Go, Normals  13  4  Aron and Poldrack (2006)  Stop – Go  5  35  Aron and Poldrack (2006)  Stop Inhibit – Stop Respond  5  13  Asahi, Okamoto, Okada, Yamawaki, and Yokota (2004)  Response Inhibition  17  11  Baglio et al. (2011)  NoGo vs. Fixation, Healthy Controls  11  5  Bellgrove, Hester, and Garavan (2004)  Response Inhibition  42  19  Bennett et al. (2009)  No/Go – Go, Non-Exposed, Correct Trials  11  8  Bonnet et al. (2009)  Initial Go/No-go > Tonic Alertness  20  3  Bonnet et al. (2009)  Complex Go/No-go > Initial Go/No-go  20  1  Bonnet et al. (2009)  Complex Go/No-go > Tonic Alertness  20  5  Bonnet et al. (2009)  Positive Correlation between Activation During Tonic Alertness and Response Time  19  6  Bonnet et al. (2009)  Positive Correlation between Activation During Initial Go/No-go and Response Time  19  2  Bonnet et al. (2009)  Positive Correlation between Activation During Reversal Go/No-go and Response Time  19  1  Bonnet et al. (2009)  Positive Correlation between Activation During Complex Go/No-go and Response Time  19  1  Bonnet et al. (2009)  Negative Correlation between Activation During Initial Go/No-go and Response Time  19  1  Bonnet et al. (2009)  Negative Correlation between Activation During Reversal Go/No-go and Response Time  19  1  Bonnet et al. (2009)  Positive Correlation between Activation During Initial Go/No-go and Education Level  20  3  Bonnet et al. (2009)  Positive Correlation between Activation During Reversal Go/No-go and Education Level  20  2  Bonnet et al. (2009)  Positive Correlation between Activation During Complex Go/No-go and Education Level  20  1  Bonnet et al. (2009)  Negative Correlation between Activation During Tonic Alertness and Education Level  20  1  Bonnet et al. (2009)  Negative Correlation between Activation During Complex Go/No-go and Education Level  20  2  Braver, Barch, Gray, Molfese, and Snyder (2001)  Conjunction Analysis  14  9  Braver et al. (2001)  Disjunction Analysis  14  19  Brown, Goltz, Vilis, Ford, and Everling (2006)  Antisaccade Response > Fixation  10  20  Brown et al. (2006)  Nogo Response > Fixation  10  19  Brown et al. (2006)  Antisaccade Response > Prosaccade Response  10  15  Brown et al. (2006)  Antisaccade Response > Nogo Response  10  16  Brown, Vilis, and Everling (2007)  Response, Antisaccade – Preparation, Antisaccade  11  11  Chevrier and Schachar (2010)  Post-Error Slowing Activations  14  16  Chevrier, Noseworthy, and Schachar (2007)  Successful Stop-Phase Activities  14  3  Chevrier et al. (2007)  Unsuccessful Stop-Phase Activities  14  10  Chikazoe, Konishi, Asari, Jimura, and Miyashita (2007)  Antisaccade – Control Saccade  24  54  Chikazoe et al. (2009)  Stop vs. Uncertain-Go  22  57  Chikazoe et al. (2009)  Uncertain-Go vs. Certain-Go  22  8  Chikazoe et al. (2009)  Conjunction Analysis, Stop vs. Uncertain-Go + Uncertain-Go vs. Certain-Go  22  19  Chikazoe et al. (2009)  Disjunction Analysis, Stop vs. Uncertain-Go but not Uncertain-Go vs. Certain-Go  22  16  Chikazoe et al. (2009)  No-Go vs. Frequent-Go  25  52  Chikazoe et al. (2009)  No-Go vs. Infrequent-Go  25  52  Connolly et al. (2000)  Anti-Saccade vs. Fixation  7  13  Connolly and colleagues (2000)  Anti-Pointing vs. Fixation  7  20  Cross, Schmitt, and Grafton (2007)  Activity during Movement Preparation (NoGo)  13  26  Cross et al. (2007)  Study Time: Random Increasing (Early > Late) > Block Increasing (Early > Late)  13  4  Cross et al. (2007)  Study Time: Block Increasing (Early > Late) > Random Increasing (Early > Late)  13  2  DeSouza, Menon, and Everling (2003)  Selectively Activated for Saccades (Both Pro and Anti)  10  9  Duka (2011)  A+ or B+ vs. C-– or D–, Reward vs. Non Reward  8  11  Duka (2011)  (AB–) – (CD–), Incentive Conflict  8  6  Duka (2011)  (A–) – (A+), Reversal  8  2  Duka (2011)  (A+) – (A–), Reversal  8  1  Durston et al. (2003)  Go > No Go, Healthy Controls  7  8  Durston (2006)  Go > No-Go, Healthy Controls  11  2  Durston (2006)  No-Go > Go, Healthy Controls  11  9  Durston (2006)  Parametric effect of preceding number of Go Trials, Healthy Controls  11  3  Durston, Thomas, Worden, Yang, and Casey (2002)  Go vs. No-Go  10  10  Ettinger et al. (2008)  Standard Antisaccade  17  15  Ettinger et al. (2008)  Saccade-by-Delay Interaction  17  15  Evers et al. (2006)  NoGO Inhibition vs. Go, Experimental Session  13  17  Falconer (2008)  No Go – Go, Normals  23  6  Fassbender et al. (2004)  Tonic Activations for Fixed and Random SART  21  21  Fassbender et al. (2004)  Activations For Correct Inhibitions  21  8  Fassbender et al. (2004)  Activations For Commission Errors  21  12  Finger, Mitchell, Jones, and Blair (2008)  Successful Extinction > Successful Baseline (Control)  19  3  Finger et al. (2008)  Correct Hits > Correct Avoidance  19  6  Finger et al. (2008)  Early Extinction Phase > Late Extinction Phase  19  8  Finger et al. (2008)  Extinction > Baseline (Control)  19  2  Finger et al. (2008)  Response Type × Phase  19  2  Finger et al. (2008)  Response × Pair  19  1  Finger et al. (2008)  Response × Phase × Pair  19  1  Ford, Goltz, Brown, and Everling (2005)  Late preparatory period comparison: Anti vs. Pro  10  8  Ford et al. (2005)  Late preparatory period comparison: Correct Anti vs. Error Anti  10  3  Ford et al. (2005)  Late preparatory period comparison: Error Anti vs. Correct Anti  10  2  Ford et al. (2005)  Saccade period comparison: Error Anti vs. Correct Anti  10  1  Garavan et al. (2002)  Successful NoGos  14  16  Garavan et al. (2002)  Errors  14  15  Garavan et al. (1999)  Response Inhibition  14  14  Garavan, Ross, Kaufman, and Stein (2003)  Task-related Performance  16  12  Garavan et al. (2003)  Event-related STOPS  16  7  Garavan et al. (2003)  Event-related ERRORS  16  5  Goldin, McRae, Ramel, and Gross (2008)  Suppress >