Evaluation of Batch Variations in Induced Pluripotent Stem Cell-Derived Human Cardiomyocytes from 2 Major Suppliers

Evaluation of Batch Variations in Induced Pluripotent Stem Cell-Derived Human Cardiomyocytes from... Drug-induced proarrhythmia is a major safety issue in drug development. Developing sensitive in vitro assays that can predict drug-induced cardiotoxicity in humans has been a challenge of toxicology research for decades. Recently, induced pluripotent stem cell-derived human cardiomyocytes (iPSC-hCMs) have become a promising model because they largely replicate the electrophysiological behavior of human ventricular cardiomyocytes. Patient-specific iPSC-hCMs have been proposed for personalized cardiac drug selection and adverse drug response prediction; however, many procedures are involved in cardiomyocytes differentiation and purification process, which may result in large line-to-line and batch-to-batch variations. Here, we examined the purity, cardiac ion channel gene expression profile, and electrophysiological response of 3 batches of iPSC-hCMs from each of 2 major cell suppliers. We found that iPSC-hCMs from both vendors had similar purities. Most of the cardiac ion channel genes were expressed uniformly among different batches of iCells, while larger variations were found in Cor.4U cells, particularly in the expression of CACNA1C, KCND2, and KCNA5 genes, which could underlie the differences in baseline beating rate (BR) and field potential duration (FPD) measurements. Although, in general, the electrophysiological responses of different batches of cells to Na+, Ca2+, Ikr, and Iks channel blockers were similar, with Ikr blocker-induced proarrhythmia, the sensitivities were depended on baseline BR and FPD values: cells that beat slower had longer FPD and greater sensitivity to drug-induced proarrhythmia. Careful evaluation of the performance of iPSC-hCMs and methods of data analysis is warranted for shaping regulatory standards in qualifying iPSC-hCMs for drug safety testing. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Toxicological Sciences Oxford University Press

Evaluation of Batch Variations in Induced Pluripotent Stem Cell-Derived Human Cardiomyocytes from 2 Major Suppliers

Loading next page...
 
/lp/ou_press/evaluation-of-batch-variations-in-induced-pluripotent-stem-cell-Vj8x7JeRIy
Publisher
Oxford University Press
Copyright
Published by Oxford University Press on behalf of the Society of Toxicology 2016. This work is written by US Government employees and is in the public domain in the US.
ISSN
1096-6080
eISSN
1096-0929
D.O.I.
10.1093/toxsci/kfw235
Publisher site
See Article on Publisher Site

Abstract

Drug-induced proarrhythmia is a major safety issue in drug development. Developing sensitive in vitro assays that can predict drug-induced cardiotoxicity in humans has been a challenge of toxicology research for decades. Recently, induced pluripotent stem cell-derived human cardiomyocytes (iPSC-hCMs) have become a promising model because they largely replicate the electrophysiological behavior of human ventricular cardiomyocytes. Patient-specific iPSC-hCMs have been proposed for personalized cardiac drug selection and adverse drug response prediction; however, many procedures are involved in cardiomyocytes differentiation and purification process, which may result in large line-to-line and batch-to-batch variations. Here, we examined the purity, cardiac ion channel gene expression profile, and electrophysiological response of 3 batches of iPSC-hCMs from each of 2 major cell suppliers. We found that iPSC-hCMs from both vendors had similar purities. Most of the cardiac ion channel genes were expressed uniformly among different batches of iCells, while larger variations were found in Cor.4U cells, particularly in the expression of CACNA1C, KCND2, and KCNA5 genes, which could underlie the differences in baseline beating rate (BR) and field potential duration (FPD) measurements. Although, in general, the electrophysiological responses of different batches of cells to Na+, Ca2+, Ikr, and Iks channel blockers were similar, with Ikr blocker-induced proarrhythmia, the sensitivities were depended on baseline BR and FPD values: cells that beat slower had longer FPD and greater sensitivity to drug-induced proarrhythmia. Careful evaluation of the performance of iPSC-hCMs and methods of data analysis is warranted for shaping regulatory standards in qualifying iPSC-hCMs for drug safety testing.

Journal

Toxicological SciencesOxford University Press

Published: Mar 1, 2017

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off