Estimating Counterfactual Risk Under Hypothetical Interventions in the Presence of Competing Events: Crystalline Silica Exposure and Mortality From two Causes of Death

Estimating Counterfactual Risk Under Hypothetical Interventions in the Presence of Competing... Abstract Exposure to silica has been linked to excess risk of lung cancer and non-malignant respiratory disease mortality. In this study we estimated risk for both these outcomes in relation to occupational silica exposure as well as the reduction in risk that would result from hypothetical interventions on exposure in a cohort of exposed workers. Analyses were carried out in an all-male study population consisting of 2342 California diatomaceous earth workers regularly exposed to crystalline silica, followed between 1942 and 2011. We estimated subdistribution risk for each event under the natural course and interventions of interest using the parametric g-formula to adjust for healthy worker survivor bias. The risk ratio for lung cancer mortality comparing an intervention in which a theoretical maximum exposure limit was set at 0.05 mg/m3 (the current U.S. regulatory limit) to the observed exposure concentrations was 0.86 (95% confidence interval: 0.63, 1.22). The corresponding risk ratio for non-malignant respiratory disease mortality was 0.69 (95% confidence interval: 0.52, 0.93). Our findings suggest that risks from both outcomes would have been considerably lower if historical silica exposures in this cohort had not exceeded current regulatory limits. competing risks, g-formula, healthy worker effect, silica © The Author(s) 2018. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journalpermissions@oup.com. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png American Journal of Epidemiology Oxford University Press

Estimating Counterfactual Risk Under Hypothetical Interventions in the Presence of Competing Events: Crystalline Silica Exposure and Mortality From two Causes of Death

Loading next page...
 
/lp/ou_press/estimating-counterfactual-risk-under-hypothetical-interventions-in-the-azCL4gC0ux
Publisher
Oxford University Press
Copyright
© The Author(s) 2018. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health.
ISSN
0002-9262
eISSN
1476-6256
D.O.I.
10.1093/aje/kwy077
Publisher site
See Article on Publisher Site

Abstract

Abstract Exposure to silica has been linked to excess risk of lung cancer and non-malignant respiratory disease mortality. In this study we estimated risk for both these outcomes in relation to occupational silica exposure as well as the reduction in risk that would result from hypothetical interventions on exposure in a cohort of exposed workers. Analyses were carried out in an all-male study population consisting of 2342 California diatomaceous earth workers regularly exposed to crystalline silica, followed between 1942 and 2011. We estimated subdistribution risk for each event under the natural course and interventions of interest using the parametric g-formula to adjust for healthy worker survivor bias. The risk ratio for lung cancer mortality comparing an intervention in which a theoretical maximum exposure limit was set at 0.05 mg/m3 (the current U.S. regulatory limit) to the observed exposure concentrations was 0.86 (95% confidence interval: 0.63, 1.22). The corresponding risk ratio for non-malignant respiratory disease mortality was 0.69 (95% confidence interval: 0.52, 0.93). Our findings suggest that risks from both outcomes would have been considerably lower if historical silica exposures in this cohort had not exceeded current regulatory limits. competing risks, g-formula, healthy worker effect, silica © The Author(s) 2018. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journalpermissions@oup.com.

Journal

American Journal of EpidemiologyOxford University Press

Published: Apr 3, 2018

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off