# Erratum: A review on the systematic formulation of 3-D multiparameter full waveform inversion in viscoelastic medium

Erratum: A review on the systematic formulation of 3-D multiparameter full waveform inversion in... Erratum of the paper ‘A review on the systematic formulation of 3-D multiparameter full waveform inversion in viscoelastic medium’, by Yang et al., published in Geophys. J. Int. (2016) 207, 129–149. The following equations were erroneously displayed in this paper and should be read as follow. The gradient of the misfit function with respect to model parameters m is the same as the gradient of the Lagrangian at the saddle points considering w and m are independent variables when performing derivatives:   \begin{eqnarray} \frac{\partial \mathbb {L}}{\partial \mathbf {m}} = \left\langle \bar{\mathbf {w}},\frac{\partial F(\mathbf {m},\mathbf {w})}{\partial \mathbf {m}}\right\rangle _T \Leftrightarrow \frac{\partial \chi }{\partial \mathbf {m}} = \left\langle \bar{\mathbf {w}},\frac{\partial F(\mathbf {m},\mathbf {w})}{\partial \mathbf {m}}\right\rangle _T \end{eqnarray} (61)  \begin{eqnarray} && {\left\langle \frac{\partial \chi }{\partial \mathbf {m}},\delta \mathbf {m} \right\rangle _\Omega =\int _\Omega \mathrm{d}\mathbf {x} \delta \rho \left(\int _0^T \mathrm{d}t \bar{\mathbf {v}}^\dagger \partial _t\mathbf {v} \right)}\nonumber\\ && {\qquad + \sum _{I=1}^6 \sum _{J=I}^6\int _\Omega \mathrm{d}\mathbf {x} \delta C_{IJ} \left(\int _0^T \mathrm{d}t \bar{\boldsymbol{\sigma }}^\dagger \frac{\partial C^{-1}}{\partial C_{IJ}} \left(\partial _t\boldsymbol{\sigma }-\mathbf {f}_\sigma + (C:: \Gamma)\sum^L_{\ell=1}y_\ell{\boldsymbol \xi_\ell}\right)\right) + \sum^6_{I=1}\sum^6_{J=I}\int_\Omega {\rm d}{\bf x}\delta C_{IJ}\left(\int^T_0{\rm d}t\bar{\boldsymbol\sigma}^\dagger C^{-1}\frac{\partial(C::\Gamma)}{\partial C_{IJ}}\sum^L_{\ell=1}y_\ell{\boldsymbol\xi}_\ell\right)}\nonumber\\ && {\qquad +\sum _{\ell =1}^L\sum _{I=1}^6\sum _{J=I}^6 y_\ell \int _{\Omega }\mathrm{d}\mathbf {x}\delta Q_{IJ}^{-1} \left(\int _0^T\mathrm{d}t \bar{\boldsymbol{\sigma }}^\dagger C^{-1} \left(C::\frac{\partial \Gamma }{\partial Q_{IJ}^{-1}}\right) \boldsymbol{\xi }_\ell \right),} \end{eqnarray} (66)  \begin{eqnarray} \frac{\partial \chi }{\partial \rho } &=& \int _0^T \mathrm{d}t \bar{\mathbf {v}}^\dagger \partial _t\mathbf {v}, \nonumber \\ \frac{\partial \chi }{\partial C_{IJ}}&=& \int _0^T \mathrm{d}t \bar{\boldsymbol{\sigma }}^\dagger \frac{\partial C^{-1}}{\partial C_{IJ}} \left(\partial _t\boldsymbol{\sigma } -\mathbf {f}_\sigma + (C::\Gamma)\sum^L_{\ell=1}y_\ell{\boldsymbol\xi}_\ell\right) + \int^T_0{\rm d}t\bar{\boldsymbol\sigma}^\dagger C^{-1}\frac{\partial(C::\Gamma)}{\partial C_{IJ}}\sum^L_{\ell=1}y_\ell{\boldsymbol\xi}_\ell, \nonumber \\ \frac{\partial \chi }{\partial Q_{IJ}^{-1}} &=& \int _0^T\mathrm{d}t \bar{\boldsymbol{\sigma }}^\dagger C^{-1}\left(C::\frac{\partial \Gamma }{\partial Q_{IJ}^{-1}}\right) \left(\sum _{\ell =1}^L y_\ell \boldsymbol{\xi}_\ell \right), \quad {\rm with}\ \left(\frac{\partial C::\Gamma}{\partial C_{IJ}}\right)_{ij} =\left\{\begin{array}{l@{\quad}l} \left(Q^{-1}_{IJ}\right)_{ij}, & {\rm if}\ \ ij=IJ, JI\\ 0, & {\rm otherwise}. \end{array}\right. \end{eqnarray} (69)  \begin{eqnarray} \frac{\partial \chi }{\partial \rho } &=& \int _0^T \mathrm{d}t \bar{\mathbf {v}}^\dagger \partial _t\mathbf {v}, \nonumber \\ \frac{\partial \chi }{\partial C_{IJ}} &=&-\int _0^T \mathrm{d}t\bar{\boldsymbol\sigma}^\dagger C^{-1}\frac{\partial C}{\partial C_{IJ}} C^{-1} D^T {\mathbf {v}} + \int^T_0 {\rm d}t\bar{\boldsymbol\sigma}^\dagger C^{-1} \frac{\partial(C::\Gamma)}{\partial C_{IJ}}\sum^L_{\ell=1}y_\ell{\boldsymbol\xi}_\ell,\nonumber\\ \frac{\partial \chi }{\partial Q_{IJ}^{-1}} &=& \int _0^T\mathrm{d}t \left( D^T \bar{\mathbf {u}} \right)^\dagger \left(C ::\frac{\partial \Gamma }{\partial Q_{IJ}^{-1}}\right) \left(\sum _{\ell =1}^L y_\ell \boldsymbol{\xi}_\ell \right), \end{eqnarray} (70)   \begin{eqnarray} \Gamma= \left[\begin{array}{c@{\quad}c@{\quad}c@{\quad}c@{\quad}c@{\quad}c} \frac{\rho\alpha^2Q^{-1}_\alpha}{\rho\alpha^2} & \frac{\rho\alpha^2 Q^{-1}_\alpha - 2\rho\beta^2 Q_\beta^{-1}}{\rho\alpha^2 - 2\rho \beta^2} & \frac{\rho\alpha^2 Q^{-1}_\alpha - 2\rho\beta^2 Q^{-1}_\beta}{\rho\alpha^2 - 2\rho\beta^2} & 0 & 0 &0\\ \frac{\rho\alpha^2 Q^{-1}_\alpha - 2\rho\beta^2 Q^{-1}_\beta}{\rho\alpha^2 - 2\rho\beta^2} & \frac{\rho\alpha^2Q^{-1}_\alpha}{\rho\alpha^2} & \frac{\rho\alpha^2 Q^{-1}_\alpha - 2\rho\beta^2 Q_\beta^{-1}}{\rho\alpha^2 - 2\rho \beta^2} & 0 & 0 & 0\\ \frac{\rho\alpha^2 Q^{-1}_\alpha - 2\rho\beta^2 Q^{-1}_\beta}{\rho\alpha^2 - 2\rho\beta^2} & \frac{\rho\alpha^2 Q^{-1}_\alpha - 2\rho\beta^2 Q_\beta^{-1}}{\rho\alpha^2 - 2\rho \beta^2} & \frac{\rho\alpha^2Q^{-1}_\alpha}{\rho\alpha^2} & 0& 0 & 0\\ 0& 0 & 0 & \frac{\rho\beta^2 Q^{-1}_\beta}{\rho\beta^2} & 0 &0\\ 0& 0 & 0 & 0 &\frac{\rho\beta^2 Q^{-1}_\beta}{\rho\beta^2} &0\\ 0& 0 & 0 & 0 & 0 &\frac{\rho\beta^2 Q^{-1}_\beta}{\rho\beta^2} \end{array}\right] \end{eqnarray} (86)  \begin{eqnarray} \frac{\partial\Gamma}{\partial Q^{-1}_\alpha}= \left[\begin{array}{c@{\quad}c@{\quad}c@{\quad}c@{\quad}c@{\quad}c} 1 & \frac{\alpha^2}{\alpha^2 - 2\beta^2} & \frac{\alpha^2}{\alpha^2 - 2\beta^2} & 0 & 0 &0\\ \frac{\alpha^2}{\alpha^2 - 2\beta^2} & 1 & \frac{\alpha^2}{\alpha^2 - 2\beta^2} & 0 & 0 &0\\ \frac{\alpha^2}{\alpha^2 - 2\beta^2} & \frac{\alpha^2}{\alpha^2 - 2\beta^2} & 1 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 \end{array} \right],\ \frac{\partial \Gamma}{\partial Q^{-1}_\beta} = \left[\begin{array}{c@{\quad}c@{\quad}c@{\quad}c@{\quad}c@{\quad}c} 0 & \frac{-2\beta^2}{\alpha^2 - 2\beta^2} & \frac{-2\beta^2}{\alpha^2 - 2\beta^2} & 0 & 0 & 0\\ \frac{-2\beta^2}{\alpha^2 - 2\beta^2} & 0 & \frac{-2\beta^2}{\alpha^2 - 2\beta^2} & 0 & 0 & 0\\ \frac{-2\beta^2}{\alpha^2 - 2\beta^2} & \frac{-2\beta^2}{\alpha^2 - 2\beta^2} & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 1 & 0 & 0\\ 0 & 0 & 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 0 & 0 & 1 \end{array} \right] \end{eqnarray} (87)  $$\partial _t\xi _\ell ^{ij}+\omega _\ell \xi _\ell ^{ij}=\omega _\ell \dot{\epsilon }_{ij}\Rightarrow \xi _\ell ^{ij}=-\frac{1}{\omega _\ell }\partial _t \xi _\ell ^{ij} + \dot{\epsilon }_{ij},$$ (B8) The online version of this paper has been corrected. The publisher apologise for these errors. © The Author(s) 2017. Published by Oxford University Press on behalf of The Royal Astronomical Society. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Geophysical Journal International Oxford University Press

# Erratum: A review on the systematic formulation of 3-D multiparameter full waveform inversion in viscoelastic medium

Geophysical Journal International, Volume 212 (3) – Mar 1, 2018
2 pages

/lp/ou_press/erratum-a-review-on-the-systematic-formulation-of-3-d-multiparameter-VkBkznydW0
Publisher
Oxford University Press
© The Author(s) 2017. Published by Oxford University Press on behalf of The Royal Astronomical Society.
ISSN
0956-540X
eISSN
1365-246X
D.O.I.
10.1093/gji/ggx493
Publisher site
See Article on Publisher Site

### Abstract

Erratum of the paper ‘A review on the systematic formulation of 3-D multiparameter full waveform inversion in viscoelastic medium’, by Yang et al., published in Geophys. J. Int. (2016) 207, 129–149. The following equations were erroneously displayed in this paper and should be read as follow. The gradient of the misfit function with respect to model parameters m is the same as the gradient of the Lagrangian at the saddle points considering w and m are independent variables when performing derivatives:   \begin{eqnarray} \frac{\partial \mathbb {L}}{\partial \mathbf {m}} = \left\langle \bar{\mathbf {w}},\frac{\partial F(\mathbf {m},\mathbf {w})}{\partial \mathbf {m}}\right\rangle _T \Leftrightarrow \frac{\partial \chi }{\partial \mathbf {m}} = \left\langle \bar{\mathbf {w}},\frac{\partial F(\mathbf {m},\mathbf {w})}{\partial \mathbf {m}}\right\rangle _T \end{eqnarray} (61)  \begin{eqnarray} && {\left\langle \frac{\partial \chi }{\partial \mathbf {m}},\delta \mathbf {m} \right\rangle _\Omega =\int _\Omega \mathrm{d}\mathbf {x} \delta \rho \left(\int _0^T \mathrm{d}t \bar{\mathbf {v}}^\dagger \partial _t\mathbf {v} \right)}\nonumber\\ && {\qquad + \sum _{I=1}^6 \sum _{J=I}^6\int _\Omega \mathrm{d}\mathbf {x} \delta C_{IJ} \left(\int _0^T \mathrm{d}t \bar{\boldsymbol{\sigma }}^\dagger \frac{\partial C^{-1}}{\partial C_{IJ}} \left(\partial _t\boldsymbol{\sigma }-\mathbf {f}_\sigma + (C:: \Gamma)\sum^L_{\ell=1}y_\ell{\boldsymbol \xi_\ell}\right)\right) + \sum^6_{I=1}\sum^6_{J=I}\int_\Omega {\rm d}{\bf x}\delta C_{IJ}\left(\int^T_0{\rm d}t\bar{\boldsymbol\sigma}^\dagger C^{-1}\frac{\partial(C::\Gamma)}{\partial C_{IJ}}\sum^L_{\ell=1}y_\ell{\boldsymbol\xi}_\ell\right)}\nonumber\\ && {\qquad +\sum _{\ell =1}^L\sum _{I=1}^6\sum _{J=I}^6 y_\ell \int _{\Omega }\mathrm{d}\mathbf {x}\delta Q_{IJ}^{-1} \left(\int _0^T\mathrm{d}t \bar{\boldsymbol{\sigma }}^\dagger C^{-1} \left(C::\frac{\partial \Gamma }{\partial Q_{IJ}^{-1}}\right) \boldsymbol{\xi }_\ell \right),} \end{eqnarray} (66)  \begin{eqnarray} \frac{\partial \chi }{\partial \rho } &=& \int _0^T \mathrm{d}t \bar{\mathbf {v}}^\dagger \partial _t\mathbf {v}, \nonumber \\ \frac{\partial \chi }{\partial C_{IJ}}&=& \int _0^T \mathrm{d}t \bar{\boldsymbol{\sigma }}^\dagger \frac{\partial C^{-1}}{\partial C_{IJ}} \left(\partial _t\boldsymbol{\sigma } -\mathbf {f}_\sigma + (C::\Gamma)\sum^L_{\ell=1}y_\ell{\boldsymbol\xi}_\ell\right) + \int^T_0{\rm d}t\bar{\boldsymbol\sigma}^\dagger C^{-1}\frac{\partial(C::\Gamma)}{\partial C_{IJ}}\sum^L_{\ell=1}y_\ell{\boldsymbol\xi}_\ell, \nonumber \\ \frac{\partial \chi }{\partial Q_{IJ}^{-1}} &=& \int _0^T\mathrm{d}t \bar{\boldsymbol{\sigma }}^\dagger C^{-1}\left(C::\frac{\partial \Gamma }{\partial Q_{IJ}^{-1}}\right) \left(\sum _{\ell =1}^L y_\ell \boldsymbol{\xi}_\ell \right), \quad {\rm with}\ \left(\frac{\partial C::\Gamma}{\partial C_{IJ}}\right)_{ij} =\left\{\begin{array}{l@{\quad}l} \left(Q^{-1}_{IJ}\right)_{ij}, & {\rm if}\ \ ij=IJ, JI\\ 0, & {\rm otherwise}. \end{array}\right. \end{eqnarray} (69)  \begin{eqnarray} \frac{\partial \chi }{\partial \rho } &=& \int _0^T \mathrm{d}t \bar{\mathbf {v}}^\dagger \partial _t\mathbf {v}, \nonumber \\ \frac{\partial \chi }{\partial C_{IJ}} &=&-\int _0^T \mathrm{d}t\bar{\boldsymbol\sigma}^\dagger C^{-1}\frac{\partial C}{\partial C_{IJ}} C^{-1} D^T {\mathbf {v}} + \int^T_0 {\rm d}t\bar{\boldsymbol\sigma}^\dagger C^{-1} \frac{\partial(C::\Gamma)}{\partial C_{IJ}}\sum^L_{\ell=1}y_\ell{\boldsymbol\xi}_\ell,\nonumber\\ \frac{\partial \chi }{\partial Q_{IJ}^{-1}} &=& \int _0^T\mathrm{d}t \left( D^T \bar{\mathbf {u}} \right)^\dagger \left(C ::\frac{\partial \Gamma }{\partial Q_{IJ}^{-1}}\right) \left(\sum _{\ell =1}^L y_\ell \boldsymbol{\xi}_\ell \right), \end{eqnarray} (70)   \begin{eqnarray} \Gamma= \left[\begin{array}{c@{\quad}c@{\quad}c@{\quad}c@{\quad}c@{\quad}c} \frac{\rho\alpha^2Q^{-1}_\alpha}{\rho\alpha^2} & \frac{\rho\alpha^2 Q^{-1}_\alpha - 2\rho\beta^2 Q_\beta^{-1}}{\rho\alpha^2 - 2\rho \beta^2} & \frac{\rho\alpha^2 Q^{-1}_\alpha - 2\rho\beta^2 Q^{-1}_\beta}{\rho\alpha^2 - 2\rho\beta^2} & 0 & 0 &0\\ \frac{\rho\alpha^2 Q^{-1}_\alpha - 2\rho\beta^2 Q^{-1}_\beta}{\rho\alpha^2 - 2\rho\beta^2} & \frac{\rho\alpha^2Q^{-1}_\alpha}{\rho\alpha^2} & \frac{\rho\alpha^2 Q^{-1}_\alpha - 2\rho\beta^2 Q_\beta^{-1}}{\rho\alpha^2 - 2\rho \beta^2} & 0 & 0 & 0\\ \frac{\rho\alpha^2 Q^{-1}_\alpha - 2\rho\beta^2 Q^{-1}_\beta}{\rho\alpha^2 - 2\rho\beta^2} & \frac{\rho\alpha^2 Q^{-1}_\alpha - 2\rho\beta^2 Q_\beta^{-1}}{\rho\alpha^2 - 2\rho \beta^2} & \frac{\rho\alpha^2Q^{-1}_\alpha}{\rho\alpha^2} & 0& 0 & 0\\ 0& 0 & 0 & \frac{\rho\beta^2 Q^{-1}_\beta}{\rho\beta^2} & 0 &0\\ 0& 0 & 0 & 0 &\frac{\rho\beta^2 Q^{-1}_\beta}{\rho\beta^2} &0\\ 0& 0 & 0 & 0 & 0 &\frac{\rho\beta^2 Q^{-1}_\beta}{\rho\beta^2} \end{array}\right] \end{eqnarray} (86)  \begin{eqnarray} \frac{\partial\Gamma}{\partial Q^{-1}_\alpha}= \left[\begin{array}{c@{\quad}c@{\quad}c@{\quad}c@{\quad}c@{\quad}c} 1 & \frac{\alpha^2}{\alpha^2 - 2\beta^2} & \frac{\alpha^2}{\alpha^2 - 2\beta^2} & 0 & 0 &0\\ \frac{\alpha^2}{\alpha^2 - 2\beta^2} & 1 & \frac{\alpha^2}{\alpha^2 - 2\beta^2} & 0 & 0 &0\\ \frac{\alpha^2}{\alpha^2 - 2\beta^2} & \frac{\alpha^2}{\alpha^2 - 2\beta^2} & 1 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 \end{array} \right],\ \frac{\partial \Gamma}{\partial Q^{-1}_\beta} = \left[\begin{array}{c@{\quad}c@{\quad}c@{\quad}c@{\quad}c@{\quad}c} 0 & \frac{-2\beta^2}{\alpha^2 - 2\beta^2} & \frac{-2\beta^2}{\alpha^2 - 2\beta^2} & 0 & 0 & 0\\ \frac{-2\beta^2}{\alpha^2 - 2\beta^2} & 0 & \frac{-2\beta^2}{\alpha^2 - 2\beta^2} & 0 & 0 & 0\\ \frac{-2\beta^2}{\alpha^2 - 2\beta^2} & \frac{-2\beta^2}{\alpha^2 - 2\beta^2} & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 1 & 0 & 0\\ 0 & 0 & 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 0 & 0 & 1 \end{array} \right] \end{eqnarray} (87)  $$\partial _t\xi _\ell ^{ij}+\omega _\ell \xi _\ell ^{ij}=\omega _\ell \dot{\epsilon }_{ij}\Rightarrow \xi _\ell ^{ij}=-\frac{1}{\omega _\ell }\partial _t \xi _\ell ^{ij} + \dot{\epsilon }_{ij},$$ (B8) The online version of this paper has been corrected. The publisher apologise for these errors. © The Author(s) 2017. Published by Oxford University Press on behalf of The Royal Astronomical Society.

### Journal

Geophysical Journal InternationalOxford University Press

Published: Mar 1, 2018

## You’re reading a free preview. Subscribe to read the entire article.

### DeepDyve is your personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month ### Explore the DeepDyve Library ### Search Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly ### Organize Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place. ### Access Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals. ### Your journals are on DeepDyve Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more. All the latest content is available, no embargo periods. DeepDyve ### Freelancer DeepDyve ### Pro Price FREE$49/month
\$360/year

Save searches from
PubMed

Create lists to

Export lists, citations