Erratum: A review on the systematic formulation of 3-D multiparameter full waveform inversion in viscoelastic medium

Erratum: A review on the systematic formulation of 3-D multiparameter full waveform inversion in... Erratum of the paper ‘A review on the systematic formulation of 3-D multiparameter full waveform inversion in viscoelastic medium’, by Yang et al., published in Geophys. J. Int. (2016) 207, 129–149. The following equations were erroneously displayed in this paper and should be read as follow. The gradient of the misfit function with respect to model parameters m is the same as the gradient of the Lagrangian at the saddle points considering w and m are independent variables when performing derivatives:   \begin{eqnarray} \frac{\partial \mathbb {L}}{\partial \mathbf {m}} = \left\langle \bar{\mathbf {w}},\frac{\partial F(\mathbf {m},\mathbf {w})}{\partial \mathbf {m}}\right\rangle _T \Leftrightarrow \frac{\partial \chi }{\partial \mathbf {m}} = \left\langle \bar{\mathbf {w}},\frac{\partial F(\mathbf {m},\mathbf {w})}{\partial \mathbf {m}}\right\rangle _T \end{eqnarray} (61)  \begin{eqnarray} && {\left\langle \frac{\partial \chi }{\partial \mathbf {m}},\delta \mathbf {m} \right\rangle _\Omega =\int _\Omega \mathrm{d}\mathbf {x} \delta \rho \left(\int _0^T \mathrm{d}t \bar{\mathbf {v}}^\dagger \partial _t\mathbf {v} \right)}\nonumber\\ && {\qquad + \sum _{I=1}^6 \sum _{J=I}^6\int _\Omega \mathrm{d}\mathbf {x} \delta C_{IJ} \left(\int _0^T \mathrm{d}t \bar{\boldsymbol{\sigma }}^\dagger \frac{\partial C^{-1}}{\partial C_{IJ}} \left(\partial _t\boldsymbol{\sigma }-\mathbf {f}_\sigma + (C:: \Gamma)\sum^L_{\ell=1}y_\ell{\boldsymbol \xi_\ell}\right)\right) + \sum^6_{I=1}\sum^6_{J=I}\int_\Omega {\rm d}{\bf x}\delta C_{IJ}\left(\int^T_0{\rm d}t\bar{\boldsymbol\sigma}^\dagger C^{-1}\frac{\partial(C::\Gamma)}{\partial C_{IJ}}\sum^L_{\ell=1}y_\ell{\boldsymbol\xi}_\ell\right)}\nonumber\\ && {\qquad +\sum _{\ell =1}^L\sum _{I=1}^6\sum _{J=I}^6 y_\ell \int _{\Omega }\mathrm{d}\mathbf {x}\delta Q_{IJ}^{-1} \left(\int _0^T\mathrm{d}t \bar{\boldsymbol{\sigma }}^\dagger C^{-1} \left(C::\frac{\partial \Gamma }{\partial Q_{IJ}^{-1}}\right) \boldsymbol{\xi }_\ell \right),} \end{eqnarray} (66)  \begin{eqnarray} \frac{\partial \chi }{\partial \rho } &=& \int _0^T \mathrm{d}t \bar{\mathbf {v}}^\dagger \partial _t\mathbf {v}, \nonumber \\ \frac{\partial \chi }{\partial C_{IJ}}&=& \int _0^T \mathrm{d}t \bar{\boldsymbol{\sigma }}^\dagger \frac{\partial C^{-1}}{\partial C_{IJ}} \left(\partial _t\boldsymbol{\sigma } -\mathbf {f}_\sigma + (C::\Gamma)\sum^L_{\ell=1}y_\ell{\boldsymbol\xi}_\ell\right) + \int^T_0{\rm d}t\bar{\boldsymbol\sigma}^\dagger C^{-1}\frac{\partial(C::\Gamma)}{\partial C_{IJ}}\sum^L_{\ell=1}y_\ell{\boldsymbol\xi}_\ell, \nonumber \\ \frac{\partial \chi }{\partial Q_{IJ}^{-1}} &=& \int _0^T\mathrm{d}t \bar{\boldsymbol{\sigma }}^\dagger C^{-1}\left(C::\frac{\partial \Gamma }{\partial Q_{IJ}^{-1}}\right) \left(\sum _{\ell =1}^L y_\ell \boldsymbol{\xi}_\ell \right), \quad {\rm with}\ \left(\frac{\partial C::\Gamma}{\partial C_{IJ}}\right)_{ij} =\left\{\begin{array}{l@{\quad}l} \left(Q^{-1}_{IJ}\right)_{ij}, & {\rm if}\ \ ij=IJ, JI\\ 0, & {\rm otherwise}. \end{array}\right. \end{eqnarray} (69)  \begin{eqnarray} \frac{\partial \chi }{\partial \rho } &=& \int _0^T \mathrm{d}t \bar{\mathbf {v}}^\dagger \partial _t\mathbf {v}, \nonumber \\ \frac{\partial \chi }{\partial C_{IJ}} &=&-\int _0^T \mathrm{d}t\bar{\boldsymbol\sigma}^\dagger C^{-1}\frac{\partial C}{\partial C_{IJ}} C^{-1} D^T {\mathbf {v}} + \int^T_0 {\rm d}t\bar{\boldsymbol\sigma}^\dagger C^{-1} \frac{\partial(C::\Gamma)}{\partial C_{IJ}}\sum^L_{\ell=1}y_\ell{\boldsymbol\xi}_\ell,\nonumber\\ \frac{\partial \chi }{\partial Q_{IJ}^{-1}} &=& \int _0^T\mathrm{d}t \left( D^T \bar{\mathbf {u}} \right)^\dagger \left(C ::\frac{\partial \Gamma }{\partial Q_{IJ}^{-1}}\right) \left(\sum _{\ell =1}^L y_\ell \boldsymbol{\xi}_\ell \right), \end{eqnarray} (70)   \begin{eqnarray} \Gamma= \left[\begin{array}{c@{\quad}c@{\quad}c@{\quad}c@{\quad}c@{\quad}c} \frac{\rho\alpha^2Q^{-1}_\alpha}{\rho\alpha^2} & \frac{\rho\alpha^2 Q^{-1}_\alpha - 2\rho\beta^2 Q_\beta^{-1}}{\rho\alpha^2 - 2\rho \beta^2} & \frac{\rho\alpha^2 Q^{-1}_\alpha - 2\rho\beta^2 Q^{-1}_\beta}{\rho\alpha^2 - 2\rho\beta^2} & 0 & 0 &0\\ \frac{\rho\alpha^2 Q^{-1}_\alpha - 2\rho\beta^2 Q^{-1}_\beta}{\rho\alpha^2 - 2\rho\beta^2} & \frac{\rho\alpha^2Q^{-1}_\alpha}{\rho\alpha^2} & \frac{\rho\alpha^2 Q^{-1}_\alpha - 2\rho\beta^2 Q_\beta^{-1}}{\rho\alpha^2 - 2\rho \beta^2} & 0 & 0 & 0\\ \frac{\rho\alpha^2 Q^{-1}_\alpha - 2\rho\beta^2 Q^{-1}_\beta}{\rho\alpha^2 - 2\rho\beta^2} & \frac{\rho\alpha^2 Q^{-1}_\alpha - 2\rho\beta^2 Q_\beta^{-1}}{\rho\alpha^2 - 2\rho \beta^2} & \frac{\rho\alpha^2Q^{-1}_\alpha}{\rho\alpha^2} & 0& 0 & 0\\ 0& 0 & 0 & \frac{\rho\beta^2 Q^{-1}_\beta}{\rho\beta^2} & 0 &0\\ 0& 0 & 0 & 0 &\frac{\rho\beta^2 Q^{-1}_\beta}{\rho\beta^2} &0\\ 0& 0 & 0 & 0 & 0 &\frac{\rho\beta^2 Q^{-1}_\beta}{\rho\beta^2} \end{array}\right] \end{eqnarray} (86)  \begin{eqnarray} \frac{\partial\Gamma}{\partial Q^{-1}_\alpha}= \left[\begin{array}{c@{\quad}c@{\quad}c@{\quad}c@{\quad}c@{\quad}c} 1 & \frac{\alpha^2}{\alpha^2 - 2\beta^2} & \frac{\alpha^2}{\alpha^2 - 2\beta^2} & 0 & 0 &0\\ \frac{\alpha^2}{\alpha^2 - 2\beta^2} & 1 & \frac{\alpha^2}{\alpha^2 - 2\beta^2} & 0 & 0 &0\\ \frac{\alpha^2}{\alpha^2 - 2\beta^2} & \frac{\alpha^2}{\alpha^2 - 2\beta^2} & 1 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 \end{array} \right],\ \frac{\partial \Gamma}{\partial Q^{-1}_\beta} = \left[\begin{array}{c@{\quad}c@{\quad}c@{\quad}c@{\quad}c@{\quad}c} 0 & \frac{-2\beta^2}{\alpha^2 - 2\beta^2} & \frac{-2\beta^2}{\alpha^2 - 2\beta^2} & 0 & 0 & 0\\ \frac{-2\beta^2}{\alpha^2 - 2\beta^2} & 0 & \frac{-2\beta^2}{\alpha^2 - 2\beta^2} & 0 & 0 & 0\\ \frac{-2\beta^2}{\alpha^2 - 2\beta^2} & \frac{-2\beta^2}{\alpha^2 - 2\beta^2} & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 1 & 0 & 0\\ 0 & 0 & 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 0 & 0 & 1 \end{array} \right] \end{eqnarray} (87)  \begin{equation} \partial _t\xi _\ell ^{ij}+\omega _\ell \xi _\ell ^{ij}=\omega _\ell \dot{\epsilon }_{ij}\Rightarrow \xi _\ell ^{ij}=-\frac{1}{\omega _\ell }\partial _t \xi _\ell ^{ij} + \dot{\epsilon }_{ij}, \end{equation} (B8) The online version of this paper has been corrected. The publisher apologise for these errors. © The Author(s) 2017. Published by Oxford University Press on behalf of The Royal Astronomical Society. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Geophysical Journal International Oxford University Press

Erratum: A review on the systematic formulation of 3-D multiparameter full waveform inversion in viscoelastic medium

Loading next page...
 
/lp/ou_press/erratum-a-review-on-the-systematic-formulation-of-3-d-multiparameter-VkBkznydW0
Publisher
The Royal Astronomical Society
Copyright
© The Author(s) 2017. Published by Oxford University Press on behalf of The Royal Astronomical Society.
ISSN
0956-540X
eISSN
1365-246X
D.O.I.
10.1093/gji/ggx493
Publisher site
See Article on Publisher Site

Abstract

Erratum of the paper ‘A review on the systematic formulation of 3-D multiparameter full waveform inversion in viscoelastic medium’, by Yang et al., published in Geophys. J. Int. (2016) 207, 129–149. The following equations were erroneously displayed in this paper and should be read as follow. The gradient of the misfit function with respect to model parameters m is the same as the gradient of the Lagrangian at the saddle points considering w and m are independent variables when performing derivatives:   \begin{eqnarray} \frac{\partial \mathbb {L}}{\partial \mathbf {m}} = \left\langle \bar{\mathbf {w}},\frac{\partial F(\mathbf {m},\mathbf {w})}{\partial \mathbf {m}}\right\rangle _T \Leftrightarrow \frac{\partial \chi }{\partial \mathbf {m}} = \left\langle \bar{\mathbf {w}},\frac{\partial F(\mathbf {m},\mathbf {w})}{\partial \mathbf {m}}\right\rangle _T \end{eqnarray} (61)  \begin{eqnarray} && {\left\langle \frac{\partial \chi }{\partial \mathbf {m}},\delta \mathbf {m} \right\rangle _\Omega =\int _\Omega \mathrm{d}\mathbf {x} \delta \rho \left(\int _0^T \mathrm{d}t \bar{\mathbf {v}}^\dagger \partial _t\mathbf {v} \right)}\nonumber\\ && {\qquad + \sum _{I=1}^6 \sum _{J=I}^6\int _\Omega \mathrm{d}\mathbf {x} \delta C_{IJ} \left(\int _0^T \mathrm{d}t \bar{\boldsymbol{\sigma }}^\dagger \frac{\partial C^{-1}}{\partial C_{IJ}} \left(\partial _t\boldsymbol{\sigma }-\mathbf {f}_\sigma + (C:: \Gamma)\sum^L_{\ell=1}y_\ell{\boldsymbol \xi_\ell}\right)\right) + \sum^6_{I=1}\sum^6_{J=I}\int_\Omega {\rm d}{\bf x}\delta C_{IJ}\left(\int^T_0{\rm d}t\bar{\boldsymbol\sigma}^\dagger C^{-1}\frac{\partial(C::\Gamma)}{\partial C_{IJ}}\sum^L_{\ell=1}y_\ell{\boldsymbol\xi}_\ell\right)}\nonumber\\ && {\qquad +\sum _{\ell =1}^L\sum _{I=1}^6\sum _{J=I}^6 y_\ell \int _{\Omega }\mathrm{d}\mathbf {x}\delta Q_{IJ}^{-1} \left(\int _0^T\mathrm{d}t \bar{\boldsymbol{\sigma }}^\dagger C^{-1} \left(C::\frac{\partial \Gamma }{\partial Q_{IJ}^{-1}}\right) \boldsymbol{\xi }_\ell \right),} \end{eqnarray} (66)  \begin{eqnarray} \frac{\partial \chi }{\partial \rho } &=& \int _0^T \mathrm{d}t \bar{\mathbf {v}}^\dagger \partial _t\mathbf {v}, \nonumber \\ \frac{\partial \chi }{\partial C_{IJ}}&=& \int _0^T \mathrm{d}t \bar{\boldsymbol{\sigma }}^\dagger \frac{\partial C^{-1}}{\partial C_{IJ}} \left(\partial _t\boldsymbol{\sigma } -\mathbf {f}_\sigma + (C::\Gamma)\sum^L_{\ell=1}y_\ell{\boldsymbol\xi}_\ell\right) + \int^T_0{\rm d}t\bar{\boldsymbol\sigma}^\dagger C^{-1}\frac{\partial(C::\Gamma)}{\partial C_{IJ}}\sum^L_{\ell=1}y_\ell{\boldsymbol\xi}_\ell, \nonumber \\ \frac{\partial \chi }{\partial Q_{IJ}^{-1}} &=& \int _0^T\mathrm{d}t \bar{\boldsymbol{\sigma }}^\dagger C^{-1}\left(C::\frac{\partial \Gamma }{\partial Q_{IJ}^{-1}}\right) \left(\sum _{\ell =1}^L y_\ell \boldsymbol{\xi}_\ell \right), \quad {\rm with}\ \left(\frac{\partial C::\Gamma}{\partial C_{IJ}}\right)_{ij} =\left\{\begin{array}{l@{\quad}l} \left(Q^{-1}_{IJ}\right)_{ij}, & {\rm if}\ \ ij=IJ, JI\\ 0, & {\rm otherwise}. \end{array}\right. \end{eqnarray} (69)  \begin{eqnarray} \frac{\partial \chi }{\partial \rho } &=& \int _0^T \mathrm{d}t \bar{\mathbf {v}}^\dagger \partial _t\mathbf {v}, \nonumber \\ \frac{\partial \chi }{\partial C_{IJ}} &=&-\int _0^T \mathrm{d}t\bar{\boldsymbol\sigma}^\dagger C^{-1}\frac{\partial C}{\partial C_{IJ}} C^{-1} D^T {\mathbf {v}} + \int^T_0 {\rm d}t\bar{\boldsymbol\sigma}^\dagger C^{-1} \frac{\partial(C::\Gamma)}{\partial C_{IJ}}\sum^L_{\ell=1}y_\ell{\boldsymbol\xi}_\ell,\nonumber\\ \frac{\partial \chi }{\partial Q_{IJ}^{-1}} &=& \int _0^T\mathrm{d}t \left( D^T \bar{\mathbf {u}} \right)^\dagger \left(C ::\frac{\partial \Gamma }{\partial Q_{IJ}^{-1}}\right) \left(\sum _{\ell =1}^L y_\ell \boldsymbol{\xi}_\ell \right), \end{eqnarray} (70)   \begin{eqnarray} \Gamma= \left[\begin{array}{c@{\quad}c@{\quad}c@{\quad}c@{\quad}c@{\quad}c} \frac{\rho\alpha^2Q^{-1}_\alpha}{\rho\alpha^2} & \frac{\rho\alpha^2 Q^{-1}_\alpha - 2\rho\beta^2 Q_\beta^{-1}}{\rho\alpha^2 - 2\rho \beta^2} & \frac{\rho\alpha^2 Q^{-1}_\alpha - 2\rho\beta^2 Q^{-1}_\beta}{\rho\alpha^2 - 2\rho\beta^2} & 0 & 0 &0\\ \frac{\rho\alpha^2 Q^{-1}_\alpha - 2\rho\beta^2 Q^{-1}_\beta}{\rho\alpha^2 - 2\rho\beta^2} & \frac{\rho\alpha^2Q^{-1}_\alpha}{\rho\alpha^2} & \frac{\rho\alpha^2 Q^{-1}_\alpha - 2\rho\beta^2 Q_\beta^{-1}}{\rho\alpha^2 - 2\rho \beta^2} & 0 & 0 & 0\\ \frac{\rho\alpha^2 Q^{-1}_\alpha - 2\rho\beta^2 Q^{-1}_\beta}{\rho\alpha^2 - 2\rho\beta^2} & \frac{\rho\alpha^2 Q^{-1}_\alpha - 2\rho\beta^2 Q_\beta^{-1}}{\rho\alpha^2 - 2\rho \beta^2} & \frac{\rho\alpha^2Q^{-1}_\alpha}{\rho\alpha^2} & 0& 0 & 0\\ 0& 0 & 0 & \frac{\rho\beta^2 Q^{-1}_\beta}{\rho\beta^2} & 0 &0\\ 0& 0 & 0 & 0 &\frac{\rho\beta^2 Q^{-1}_\beta}{\rho\beta^2} &0\\ 0& 0 & 0 & 0 & 0 &\frac{\rho\beta^2 Q^{-1}_\beta}{\rho\beta^2} \end{array}\right] \end{eqnarray} (86)  \begin{eqnarray} \frac{\partial\Gamma}{\partial Q^{-1}_\alpha}= \left[\begin{array}{c@{\quad}c@{\quad}c@{\quad}c@{\quad}c@{\quad}c} 1 & \frac{\alpha^2}{\alpha^2 - 2\beta^2} & \frac{\alpha^2}{\alpha^2 - 2\beta^2} & 0 & 0 &0\\ \frac{\alpha^2}{\alpha^2 - 2\beta^2} & 1 & \frac{\alpha^2}{\alpha^2 - 2\beta^2} & 0 & 0 &0\\ \frac{\alpha^2}{\alpha^2 - 2\beta^2} & \frac{\alpha^2}{\alpha^2 - 2\beta^2} & 1 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 \end{array} \right],\ \frac{\partial \Gamma}{\partial Q^{-1}_\beta} = \left[\begin{array}{c@{\quad}c@{\quad}c@{\quad}c@{\quad}c@{\quad}c} 0 & \frac{-2\beta^2}{\alpha^2 - 2\beta^2} & \frac{-2\beta^2}{\alpha^2 - 2\beta^2} & 0 & 0 & 0\\ \frac{-2\beta^2}{\alpha^2 - 2\beta^2} & 0 & \frac{-2\beta^2}{\alpha^2 - 2\beta^2} & 0 & 0 & 0\\ \frac{-2\beta^2}{\alpha^2 - 2\beta^2} & \frac{-2\beta^2}{\alpha^2 - 2\beta^2} & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 1 & 0 & 0\\ 0 & 0 & 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 0 & 0 & 1 \end{array} \right] \end{eqnarray} (87)  \begin{equation} \partial _t\xi _\ell ^{ij}+\omega _\ell \xi _\ell ^{ij}=\omega _\ell \dot{\epsilon }_{ij}\Rightarrow \xi _\ell ^{ij}=-\frac{1}{\omega _\ell }\partial _t \xi _\ell ^{ij} + \dot{\epsilon }_{ij}, \end{equation} (B8) The online version of this paper has been corrected. The publisher apologise for these errors. © The Author(s) 2017. Published by Oxford University Press on behalf of The Royal Astronomical Society.

Journal

Geophysical Journal InternationalOxford University Press

Published: Mar 1, 2018

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off