Endothelin and Subarachnoid Hemorrhage: An Overview

Endothelin and Subarachnoid Hemorrhage: An Overview AbstractINTRODUCTION:Delayed cerebral vasospasm occurring after subarachnoid hemorrhage (SAH) is still responsible for a considerable percentage of the morbidity and mortality in patients with aneurysms. It has been suggested that the pathogenesis of delayed cerebral vasospasm is related to a number of pathological processes, including endothelial damage and smooth muscle cell contraction resulting from spasmogenic substances generated during lysis of subarachnoid blood clots, changes in vascular responsiveness, and inflammatory or immunological reactions of the vascular wall. It has been recognized that the endothelium plays an important role in the regulation of the cerebral vascular tone. In 1988, endothelin (ET)-1, a potent vasoconstrictor, was isolated from cultured porcine aortic endothelial cells.RESULTS:ET-1, which is one of three distinct isoforms of ETs (ET-1, ET-2, and ET-3), has a more marked effect on cerebral arteries than do the other two isoforms. Elevated levels of ETs have been demonstrated in the cerebrospinal fluid and plasma of patients after SAH and cerebral infarction. ETs act by at least three different receptor subtypes, the ETA receptor, which is localized in vascular smooth muscle cells and mediates vasoconstriction, and two different ETB receptor subtypes. The ETB1 receptor subtype is present in vascular endothelial cells and mediates the endothelium-dependent vasodilation. The ETB2 receptor subtype is present in smooth muscle cells causing vasoconstriction. ET-1 acts from the adventitial but not from the luminal side of cerebral arteries. In vivo and in vitro ET-1 causes a dose-dependent and long-lasting vasoconstriction, similar to cerebral vasospasm after SAH. The vasoconstriction caused by ET-1 can be reversed by selective ETA receptor antagonists or combined ETA and ETB receptor antagonists.CONCLUSION:The results of current clinical and experimental investigations support the hypothesis that ET-1 is a major cause of cerebral vasospasm after SAH. Other studies indicate that SAH causes complex changes in the ET system and increased ET-1 levels after SAH, which are not solely responsible for the development of vasospasm but may occur after cerebral ischemia. Further investigations are therefore needed to clarify these different hypotheses. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Neurosurgery Oxford University Press

Endothelin and Subarachnoid Hemorrhage: An Overview

Endothelin and Subarachnoid Hemorrhage: An Overview

Michael Zimmermann, M.D., Volker Seifert, M.D., Ph.D. Neurosurgical C lin ic, University of Leipzig, Germany INTRODUCTION: Delayed cerebral vasospasm occurring after subarachnoid hemorrhage (SAH) is still responsible for a considerable percentage of the morbidity and mortality in patients with aneurysms. It has been suggested that the pathogenesis of delayed cerebral vasospasm is related to a number of pathological processes, including endothelial damage and smooth muscle cell contraction resulting from spasmogenic substances generated during lysis of subarachnoid blood clots, changes in vascular responsiveness, and inflammatory or immunological reactions of the vascular wall. It has been recognized that the endothelium plays an important role in the regulation of the cerebral vascular tone. In 1988, endothelin (ET)-1, a potent vasoconstrictor, was isolated from cultured porcine aortic endothelial cells. RESULTS: ET-1 , which is one of three distinct isoforms of ETs (ET-1 , ET-2 , and ET-3), has a more marked effect on cerebral arteries than do the other two isoforms. Elevated levels of ETs have been demonstrated in the cerebrospinal fluid and plasma of patients after SAH and cerebral infarction. ETs act by at least three different receptor subtypes, the ETA receptor, which is localized in vascular smooth muscle cells and mediates vasocon­ striction, and two different ETB receptor subtypes. The ETB1 receptor subtype is present in vascular endothelial cells and mediates the endothelium-dependent vasodilation. The ETB2 receptor subtype is present in smooth muscle cells causing vasoconstriction. ET-1 acts from the adventitial but not from the luminal side of cerebral arteries. In vivo and in vitro ET-1 causes a dose-dependent and long-lasting vasoconstriction, similar to cerebral vasospasm after SAH. The vasoconstriction caused by ET-1 can be reversed by selective ETA receptor antagonists or combined ETA and ETB receptor antagonists. CONCLUSION: The results of...
Loading next page...
 
/lp/ou_press/endothelin-and-subarachnoid-hemorrhage-an-overview-0TfajiOBwz
Publisher
Congress of Neurological Surgeons
Copyright
© Published by Oxford University Press.
ISSN
0148-396X
eISSN
1524-4040
D.O.I.
10.1097/00006123-199810000-00083
Publisher site
See Article on Publisher Site

Abstract

AbstractINTRODUCTION:Delayed cerebral vasospasm occurring after subarachnoid hemorrhage (SAH) is still responsible for a considerable percentage of the morbidity and mortality in patients with aneurysms. It has been suggested that the pathogenesis of delayed cerebral vasospasm is related to a number of pathological processes, including endothelial damage and smooth muscle cell contraction resulting from spasmogenic substances generated during lysis of subarachnoid blood clots, changes in vascular responsiveness, and inflammatory or immunological reactions of the vascular wall. It has been recognized that the endothelium plays an important role in the regulation of the cerebral vascular tone. In 1988, endothelin (ET)-1, a potent vasoconstrictor, was isolated from cultured porcine aortic endothelial cells.RESULTS:ET-1, which is one of three distinct isoforms of ETs (ET-1, ET-2, and ET-3), has a more marked effect on cerebral arteries than do the other two isoforms. Elevated levels of ETs have been demonstrated in the cerebrospinal fluid and plasma of patients after SAH and cerebral infarction. ETs act by at least three different receptor subtypes, the ETA receptor, which is localized in vascular smooth muscle cells and mediates vasoconstriction, and two different ETB receptor subtypes. The ETB1 receptor subtype is present in vascular endothelial cells and mediates the endothelium-dependent vasodilation. The ETB2 receptor subtype is present in smooth muscle cells causing vasoconstriction. ET-1 acts from the adventitial but not from the luminal side of cerebral arteries. In vivo and in vitro ET-1 causes a dose-dependent and long-lasting vasoconstriction, similar to cerebral vasospasm after SAH. The vasoconstriction caused by ET-1 can be reversed by selective ETA receptor antagonists or combined ETA and ETB receptor antagonists.CONCLUSION:The results of current clinical and experimental investigations support the hypothesis that ET-1 is a major cause of cerebral vasospasm after SAH. Other studies indicate that SAH causes complex changes in the ET system and increased ET-1 levels after SAH, which are not solely responsible for the development of vasospasm but may occur after cerebral ischemia. Further investigations are therefore needed to clarify these different hypotheses.

Journal

NeurosurgeryOxford University Press

Published: Oct 1, 1998

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off