Endoscopic port access surgery for isolated atrioventricular valve endocarditis

Endoscopic port access surgery for isolated atrioventricular valve endocarditis Abstract OBJECTIVES Our goal was to report the clinical and echocardiographic outcomes of endoscopic port access surgery for isolated active and convalescent atrioventricular valve endocarditis (AVVE). METHODS Our current surgical team performed endoscopic port access surgery in 66 consecutive patients with isolated AVVE (mean age, 65.5 ± 12.7 years, 37.9% women, mean EuroSCORE II 31.2 ± 24.9%, 45.5% prosthetic AVVE, Staphylococcus aureus 22.2%), between 1 May 2004 and 31 July 2015. Isolated mitral valve endocarditis was present in 53 (80.4%) patients, including 11 (16.7%) with periannular abscesses. RESULTS Procedures performed included mitral valve repair (n = 15, 22.7%) and left ventricular septal myomectomy (n = 1, 1.5%). Reasons for sternotomy conversion (n = 6, 9.1%) included lung adhesions (n = 3, 4.5%). The mean cardiopulmonary bypass and ischaemic times were 167.2 ±48.7 and 112.6 ± 33.3 min, respectively. In-hospital morbidities included revision for bleeding (n = 6, 9.1%). The 30-day survival rate was 87.9%. Causes of in-hospital deaths (n = 12) included low cardiac output syndrome (n = 3, 4.5%). Age, critical preoperative status and EuroSCORE II score predicted deaths individually at the 5% level of significance. The Kaplan–Meier analyses (mean 63.2 ± 42.5 months) for survival and freedom from AVVE reintervention at 10 years were 69.4% and 98.4%, respectively. Of the mid-term survivors (n = 50, 93.9% complete), 94.0% (n = 47) classified as New York Heart Association (NYHA) II or less with no mitral valve regurgitation greater than Grade I. CONCLUSIONS Complex atrioventricular valve surgery in the context of AVVE can be endoscopically performed in experienced centres and should not deter surgeons from offering patients with AVVE the potential benefits of minimally invasive cardiac surgery. Minimally invasive cardiac surgery, Mitral and tricuspid valve disease, Endocarditis, Outcome INTRODUCTION We are witnessing a progressive evolution in the clinical approach to infective endocarditis, which includes specialized guidelines within a multidisciplinary team context [1, 2]. The indications for surgical intervention are well described [3], and the procedure is currently performed through a sternotomy or right thoracotomy access [4] to allow aggressive debridement, infection control and restoration of valve morphology, either by reconstructive [5–7] or replacement procedures [8, 9]. The dismal survival and quality-of-life outcomes are well documented [10]. The role of minimally invasive and catheter-based therapies for isolated atrioventricular valve endocarditis (AVVE) remains undefined in an era of ongoing technological advances and increasing patient expectations. We initiated our minimally invasive atrioventricular valve program by Port Access™ (endoscopic port access surgery [EPAS]) in February 1997 and provide an in-depth overview of our experience in 66 consecutive patients who underwent surgery for isolated acute and convalescent AVVE. MATERIALS AND METHODS This is a retrospective observational study of a single-centre database. Our current surgical team performed EPAS in 66 consecutive patients with isolated AVVE between 1 May 2004 and 31 July 2015, with the relevant preoperative patient characteristics outlined in Table 1. No patient selection or exclusion criteria were applied because access via sternotomy for diseased mitral and tricuspid valves (TVs) was abandoned with the introduction of our EPAS program in 1997. The mean and median EuroSCOREs II were 31.2 ± 24.9 and 23.2, respectively. The surgical indications, which may be multiple per patient, are described in Table 2. The microbiological profiles are outlined in Table 3. Table 1: Preoperative patient characteristics Variables  n = 66  Age (years), mean ± SD (range)  65.5 ± 12.7 (29.5–85.3)  Age above 70 years, n (%)  26 (39.4)  Female, n (%)  25 (37.9)  Body mass index (kg/m2), mean ± SD (range)  27.6 ± 5.1 (22.5–42.2)  Active endocarditis, n (%)  41 (62.1)  Convalescent- or blood culture negative endocarditis, n (%)  25 (37.9)  Comorbidities present, n (%)   Previous cardiac surgery  34 (51.5)   Chronic obstructive pulmonary disease  7 (10.6)   Permanent pacemaker/internal defibrillator  12 (18.2)   Peripheral vascular disease  17 (25.8)   Renal dysfunction  13 (19.7)   Dialysis  5 (7.6)   Pulmonary hypertension  6 (9.1)   Hypertrophic obstructive cardiomyopathy  1 (1.5)   Marfan syndrome  1 (1.5)  Congestive cardiac failure, n (%)  52 (78.8)  Cerebrovascular embolization/stroke, n (%)  12 (18.2)  Critical preoperative state, n (%)  9 (13.6)  EuroSCORE II   Mean ± SD (range)  31.2 ± 24.9 (1.7–97.8)   0–10, n (%)  13 (19.7)   11–40, n (%)  31 (47.0)   41–70, n (%)  13 (19.7)   71–100, n (%)  9 (13.6)  Impaired left ventricle function (<50%), n (%)  5 (7.6)  Variables  n = 66  Age (years), mean ± SD (range)  65.5 ± 12.7 (29.5–85.3)  Age above 70 years, n (%)  26 (39.4)  Female, n (%)  25 (37.9)  Body mass index (kg/m2), mean ± SD (range)  27.6 ± 5.1 (22.5–42.2)  Active endocarditis, n (%)  41 (62.1)  Convalescent- or blood culture negative endocarditis, n (%)  25 (37.9)  Comorbidities present, n (%)   Previous cardiac surgery  34 (51.5)   Chronic obstructive pulmonary disease  7 (10.6)   Permanent pacemaker/internal defibrillator  12 (18.2)   Peripheral vascular disease  17 (25.8)   Renal dysfunction  13 (19.7)   Dialysis  5 (7.6)   Pulmonary hypertension  6 (9.1)   Hypertrophic obstructive cardiomyopathy  1 (1.5)   Marfan syndrome  1 (1.5)  Congestive cardiac failure, n (%)  52 (78.8)  Cerebrovascular embolization/stroke, n (%)  12 (18.2)  Critical preoperative state, n (%)  9 (13.6)  EuroSCORE II   Mean ± SD (range)  31.2 ± 24.9 (1.7–97.8)   0–10, n (%)  13 (19.7)   11–40, n (%)  31 (47.0)   41–70, n (%)  13 (19.7)   71–100, n (%)  9 (13.6)  Impaired left ventricle function (<50%), n (%)  5 (7.6)  SD: standard deviation. Table 1: Preoperative patient characteristics Variables  n = 66  Age (years), mean ± SD (range)  65.5 ± 12.7 (29.5–85.3)  Age above 70 years, n (%)  26 (39.4)  Female, n (%)  25 (37.9)  Body mass index (kg/m2), mean ± SD (range)  27.6 ± 5.1 (22.5–42.2)  Active endocarditis, n (%)  41 (62.1)  Convalescent- or blood culture negative endocarditis, n (%)  25 (37.9)  Comorbidities present, n (%)   Previous cardiac surgery  34 (51.5)   Chronic obstructive pulmonary disease  7 (10.6)   Permanent pacemaker/internal defibrillator  12 (18.2)   Peripheral vascular disease  17 (25.8)   Renal dysfunction  13 (19.7)   Dialysis  5 (7.6)   Pulmonary hypertension  6 (9.1)   Hypertrophic obstructive cardiomyopathy  1 (1.5)   Marfan syndrome  1 (1.5)  Congestive cardiac failure, n (%)  52 (78.8)  Cerebrovascular embolization/stroke, n (%)  12 (18.2)  Critical preoperative state, n (%)  9 (13.6)  EuroSCORE II   Mean ± SD (range)  31.2 ± 24.9 (1.7–97.8)   0–10, n (%)  13 (19.7)   11–40, n (%)  31 (47.0)   41–70, n (%)  13 (19.7)   71–100, n (%)  9 (13.6)  Impaired left ventricle function (<50%), n (%)  5 (7.6)  Variables  n = 66  Age (years), mean ± SD (range)  65.5 ± 12.7 (29.5–85.3)  Age above 70 years, n (%)  26 (39.4)  Female, n (%)  25 (37.9)  Body mass index (kg/m2), mean ± SD (range)  27.6 ± 5.1 (22.5–42.2)  Active endocarditis, n (%)  41 (62.1)  Convalescent- or blood culture negative endocarditis, n (%)  25 (37.9)  Comorbidities present, n (%)   Previous cardiac surgery  34 (51.5)   Chronic obstructive pulmonary disease  7 (10.6)   Permanent pacemaker/internal defibrillator  12 (18.2)   Peripheral vascular disease  17 (25.8)   Renal dysfunction  13 (19.7)   Dialysis  5 (7.6)   Pulmonary hypertension  6 (9.1)   Hypertrophic obstructive cardiomyopathy  1 (1.5)   Marfan syndrome  1 (1.5)  Congestive cardiac failure, n (%)  52 (78.8)  Cerebrovascular embolization/stroke, n (%)  12 (18.2)  Critical preoperative state, n (%)  9 (13.6)  EuroSCORE II   Mean ± SD (range)  31.2 ± 24.9 (1.7–97.8)   0–10, n (%)  13 (19.7)   11–40, n (%)  31 (47.0)   41–70, n (%)  13 (19.7)   71–100, n (%)  9 (13.6)  Impaired left ventricle function (<50%), n (%)  5 (7.6)  SD: standard deviation. Table 2: Surgical indications Surgical indications  n = 66  Isolated mitral valve endocarditis, n (%)  53 (80.3)   Native valve endocarditis  28 (42.4)   Prosthetic valve endocarditis  25 (37.9)    Previous repair  12 (18.2)    Previous replacement  13 (19.7)     Mechanical prosthesis  10 (15.2)     Biological prosthetic  3 (4.5)   Periannular abscess or fistulous tract  11 (16.7)  Isolated tricuspid valve endocarditis, n (%)  6 (9.1)   Native valve endocarditis  6 (9.1)  Combined mitral- and tricuspid valve endocarditis, n (%)  7 (10.6)   Native valve endocarditis  2 (3.0)   Mitral- or tricuspid valve prosthetic endocarditis  5 (7.6)  Device related endocarditis, n (%)  11 (16.7)  Atrial fibrillation, n (%)  4 (6.1)  Left ventricular outflow tract obstruction, n (%)  1 (1.5)  Patent foramen ovale, n (%)  1 (1.5)  Time interval between previous cardiac surgery and AVVE presentation  Previous cardiac procedure  Years  MV repair (n = 14, 21.2%), mean ± SD (range)  5.7 ± 6.4 (0.1–21.2)  MV replacement (n = 16, 24.2%), mean ± SD (range)  11.7 ± 8.3 (0.2–27.5)  TV surgery (repair: n = 3, 4.5%; replacement: n = 1, 1.5%), mean ± SD (range)  10.8 ± 10.7 (0.3–21.6)  Pacemaker/internal defibrillator implantation (n = 11, 16.7%), mean ± SD (range)  5.2 ± 6.8 (0.2–21.8)  Isolated cryoablation (n = 1, 1.5%)  0.2  Surgical indications  n = 66  Isolated mitral valve endocarditis, n (%)  53 (80.3)   Native valve endocarditis  28 (42.4)   Prosthetic valve endocarditis  25 (37.9)    Previous repair  12 (18.2)    Previous replacement  13 (19.7)     Mechanical prosthesis  10 (15.2)     Biological prosthetic  3 (4.5)   Periannular abscess or fistulous tract  11 (16.7)  Isolated tricuspid valve endocarditis, n (%)  6 (9.1)   Native valve endocarditis  6 (9.1)  Combined mitral- and tricuspid valve endocarditis, n (%)  7 (10.6)   Native valve endocarditis  2 (3.0)   Mitral- or tricuspid valve prosthetic endocarditis  5 (7.6)  Device related endocarditis, n (%)  11 (16.7)  Atrial fibrillation, n (%)  4 (6.1)  Left ventricular outflow tract obstruction, n (%)  1 (1.5)  Patent foramen ovale, n (%)  1 (1.5)  Time interval between previous cardiac surgery and AVVE presentation  Previous cardiac procedure  Years  MV repair (n = 14, 21.2%), mean ± SD (range)  5.7 ± 6.4 (0.1–21.2)  MV replacement (n = 16, 24.2%), mean ± SD (range)  11.7 ± 8.3 (0.2–27.5)  TV surgery (repair: n = 3, 4.5%; replacement: n = 1, 1.5%), mean ± SD (range)  10.8 ± 10.7 (0.3–21.6)  Pacemaker/internal defibrillator implantation (n = 11, 16.7%), mean ± SD (range)  5.2 ± 6.8 (0.2–21.8)  Isolated cryoablation (n = 1, 1.5%)  0.2  AVVE: atrioventricular valve endocarditis; MV: mitral valve; SD: standard deviation; TV: tricuspid valve. Table 2: Surgical indications Surgical indications  n = 66  Isolated mitral valve endocarditis, n (%)  53 (80.3)   Native valve endocarditis  28 (42.4)   Prosthetic valve endocarditis  25 (37.9)    Previous repair  12 (18.2)    Previous replacement  13 (19.7)     Mechanical prosthesis  10 (15.2)     Biological prosthetic  3 (4.5)   Periannular abscess or fistulous tract  11 (16.7)  Isolated tricuspid valve endocarditis, n (%)  6 (9.1)   Native valve endocarditis  6 (9.1)  Combined mitral- and tricuspid valve endocarditis, n (%)  7 (10.6)   Native valve endocarditis  2 (3.0)   Mitral- or tricuspid valve prosthetic endocarditis  5 (7.6)  Device related endocarditis, n (%)  11 (16.7)  Atrial fibrillation, n (%)  4 (6.1)  Left ventricular outflow tract obstruction, n (%)  1 (1.5)  Patent foramen ovale, n (%)  1 (1.5)  Time interval between previous cardiac surgery and AVVE presentation  Previous cardiac procedure  Years  MV repair (n = 14, 21.2%), mean ± SD (range)  5.7 ± 6.4 (0.1–21.2)  MV replacement (n = 16, 24.2%), mean ± SD (range)  11.7 ± 8.3 (0.2–27.5)  TV surgery (repair: n = 3, 4.5%; replacement: n = 1, 1.5%), mean ± SD (range)  10.8 ± 10.7 (0.3–21.6)  Pacemaker/internal defibrillator implantation (n = 11, 16.7%), mean ± SD (range)  5.2 ± 6.8 (0.2–21.8)  Isolated cryoablation (n = 1, 1.5%)  0.2  Surgical indications  n = 66  Isolated mitral valve endocarditis, n (%)  53 (80.3)   Native valve endocarditis  28 (42.4)   Prosthetic valve endocarditis  25 (37.9)    Previous repair  12 (18.2)    Previous replacement  13 (19.7)     Mechanical prosthesis  10 (15.2)     Biological prosthetic  3 (4.5)   Periannular abscess or fistulous tract  11 (16.7)  Isolated tricuspid valve endocarditis, n (%)  6 (9.1)   Native valve endocarditis  6 (9.1)  Combined mitral- and tricuspid valve endocarditis, n (%)  7 (10.6)   Native valve endocarditis  2 (3.0)   Mitral- or tricuspid valve prosthetic endocarditis  5 (7.6)  Device related endocarditis, n (%)  11 (16.7)  Atrial fibrillation, n (%)  4 (6.1)  Left ventricular outflow tract obstruction, n (%)  1 (1.5)  Patent foramen ovale, n (%)  1 (1.5)  Time interval between previous cardiac surgery and AVVE presentation  Previous cardiac procedure  Years  MV repair (n = 14, 21.2%), mean ± SD (range)  5.7 ± 6.4 (0.1–21.2)  MV replacement (n = 16, 24.2%), mean ± SD (range)  11.7 ± 8.3 (0.2–27.5)  TV surgery (repair: n = 3, 4.5%; replacement: n = 1, 1.5%), mean ± SD (range)  10.8 ± 10.7 (0.3–21.6)  Pacemaker/internal defibrillator implantation (n = 11, 16.7%), mean ± SD (range)  5.2 ± 6.8 (0.2–21.8)  Isolated cryoablation (n = 1, 1.5%)  0.2  AVVE: atrioventricular valve endocarditis; MV: mitral valve; SD: standard deviation; TV: tricuspid valve. Table 3: Microbiological profile Microbiological profile  n = 66  Streptococcus species, n (%)  19 (28.8)   viridans  9 (13.6)   sanguinus  1 (1.5)   mitis  1 (1.5)   agalactiae  2 (3.0)   bovis  1 (1.5)  Staphylococcus species, n (%)  20 (30.3)   aureus  14 (21.2)   lugdunensis  1 (1.5)   epidermidis  2 (3.0)   schleiferi  1 (1.5)   indifference  2 (3.0)  Intermedius Enterococcus species, n (%)  5 (7.6)   fecaelis (formerly Streptococcus fecaelis)  5 (7.6)  Fungal, n (%)  1 (1.5)   Candida albicans  1 (1.5)  Other, n (%)  1 (1.5)   Clostridium perfringens  1 (1.5)  Culture-negative endocarditis, n (%)  25 (37.8)  Microbiological profile  n = 66  Streptococcus species, n (%)  19 (28.8)   viridans  9 (13.6)   sanguinus  1 (1.5)   mitis  1 (1.5)   agalactiae  2 (3.0)   bovis  1 (1.5)  Staphylococcus species, n (%)  20 (30.3)   aureus  14 (21.2)   lugdunensis  1 (1.5)   epidermidis  2 (3.0)   schleiferi  1 (1.5)   indifference  2 (3.0)  Intermedius Enterococcus species, n (%)  5 (7.6)   fecaelis (formerly Streptococcus fecaelis)  5 (7.6)  Fungal, n (%)  1 (1.5)   Candida albicans  1 (1.5)  Other, n (%)  1 (1.5)   Clostridium perfringens  1 (1.5)  Culture-negative endocarditis, n (%)  25 (37.8)  Table 3: Microbiological profile Microbiological profile  n = 66  Streptococcus species, n (%)  19 (28.8)   viridans  9 (13.6)   sanguinus  1 (1.5)   mitis  1 (1.5)   agalactiae  2 (3.0)   bovis  1 (1.5)  Staphylococcus species, n (%)  20 (30.3)   aureus  14 (21.2)   lugdunensis  1 (1.5)   epidermidis  2 (3.0)   schleiferi  1 (1.5)   indifference  2 (3.0)  Intermedius Enterococcus species, n (%)  5 (7.6)   fecaelis (formerly Streptococcus fecaelis)  5 (7.6)  Fungal, n (%)  1 (1.5)   Candida albicans  1 (1.5)  Other, n (%)  1 (1.5)   Clostridium perfringens  1 (1.5)  Culture-negative endocarditis, n (%)  25 (37.8)  Microbiological profile  n = 66  Streptococcus species, n (%)  19 (28.8)   viridans  9 (13.6)   sanguinus  1 (1.5)   mitis  1 (1.5)   agalactiae  2 (3.0)   bovis  1 (1.5)  Staphylococcus species, n (%)  20 (30.3)   aureus  14 (21.2)   lugdunensis  1 (1.5)   epidermidis  2 (3.0)   schleiferi  1 (1.5)   indifference  2 (3.0)  Intermedius Enterococcus species, n (%)  5 (7.6)   fecaelis (formerly Streptococcus fecaelis)  5 (7.6)  Fungal, n (%)  1 (1.5)   Candida albicans  1 (1.5)  Other, n (%)  1 (1.5)   Clostridium perfringens  1 (1.5)  Culture-negative endocarditis, n (%)  25 (37.8)  Surgical techniques and in-hospital treatment pathway Our EPAS techniques, which include peripheral cardiopulmonary bypass (CPB) and endoaortic balloon occlusion, are well described [11–17]. Preoperative thoracic imaging studies are not routinely performed specifically for a minimally invasive incision or thoracic access planning. We prefer endoaortic occlusion over transaortic clamping [18] and routinely perform aorta-iliac-femoral-axis angiography during preoperative coronary catheterization in stable patients and use computed tomography (CT) imaging in emergencies. Whenever possible, we identify and appropriately treat the primary source of the AVVE infection before we consider cardiac surgery. EPAS for AVVE is only considered once a comprehensive transoesophageal echocardiographic examination has excluded the involvement of non-atrioventricular valves and structures [19]. We performed AVVE surgery without delay in patients with prosthetic AVVE, congestive cardiac failure, uncontrolled sepsis, abscesses or risk for persistent systemic emboli, provided that cerebral haemorrhage was excluded by cranial CT imaging [20, 21]. We attempted to postpone surgery for 4 weeks in cases of intracranial haemorrhage and did not consider clinically silent cerebral embolism or transient ischaemic attacks as surgical contraindications [22–24]. Once CPB, cardioplegic arrest and intracardiac exposure were established, radical excision of all macroscopically infected valvular, subvalvular, annular and periannular tissue was performed using instruments with long shafts. Subsequent valve repair or replacement was determined by the quality of the remaining valvular structures. Annular patch reconstruction was performed according to routine principles [25], as was that of the valve leaflets by using either bovine or native pericardial patches according to the preference of the surgeon. The subvalvular apparatus was reattached with sutures (Gore-Tex™, Newark, DE, USA) to the free edges of the atrioventricular valves as indicated. Access to the left ventricular outflow tract was obtained by annular detachment of anterior mitral valve (MV) segments A1 to A3 in cases of outflow obstruction. The septal myomectomy was performed by sharp dissection that extended from the aortic valve to the base of the left ventricle [26]. In cases of atrial fibrillation, cryoablation was performed with an argon gas surgical ablation system (Medtronic, Minneapolis, MN, USA) and the left atrial appendage was oversewn. A patent foramen ovale was routinely closed. Previously implanted intracardiac devices (pacemakers, defibrillators, cardiac resynchronization therapy devices) were removed with all contact lesions excised at the level of the TV, the right atrium, the free wall of the right ventricle and the distal superior vena cava [27]. Temporary epicardial pacing wires were routinely placed on the left ventricular aspect. In cases of permanent pacemaker dependency, staged percutaneous or permanent epicardial electrode reimplantation was performed once patient recovery excluded residual infection. Postoperative cardiorespiratory support, sedation, analgesia and appropriate microbiology-guided antibiotic therapy were administered in the intensive care unit. Continuation of care was supervised by a specialist multidisciplinary endocarditis team for 6 weeks, either as an in-patient, or in selected cases [1], as an out-patient. Unfractionated heparin preceded the introduction of fenprocoumon (3M Health Care Ltd, St. Paul, MN, USA) until infection control was confirmed for 2 consecutive weeks, with conversion to acetylsalicylic acid after 3 months in the absence of atrial fibrillation or mechanical valve implantation. Follow-up Post-discharge continuation of care was ascertained by the referring cardiologist and family physician with a surgical review after 6 weeks. Post-discharge clinical and echocardiographic data were obtained by reviewing the latest available consultation records. Data analysis All in-hospital data were collected from a prospective database. The continuous and categorical outcomes were assessed by the incidence of adverse events (mean ± standard deviation) and the calculated intraoperative and 30-day mortality rates. Univariate- and multivariate analyses by logistic regression, which is appropriate for binary dependent variables, were used to identify independent predictors of mortality. Variables that were possibly associated with in-hospital mortality in univariate analysis were included in the multivariable logistic regression analysis to identify independent factors for in-hospital mortality. The significance level used in univariate and multivariable analyses was P-value <0.05, and all the reported P-values were 2-sided. The post-discharge data were collected retrospectively. Post-discharge survival and freedom from reoperation estimates were determined by Kaplan–Meier analysis and are expressed as a proportion ± standard error based on the intention to treat principle of the total population (n = 66). Statistical analysis was performed with the Statistica 64 software (Dell Inc., Round Rock, TX, USA). The study was approved by the institutional ethics review committee. The authors agreed to the manuscript as written and take responsibility for data integrity. RESULTS Intraoperative outcome A total of 66 consecutive patients underwent EPAS for isolated AVVE. The procedures performed, which may be more than 1 per patient, CPB and endoaortic occlusion times are outlined in Table 4. Twenty-five patients presented with isolated endocarditis in the context of previous MV repair, of which 15 (60%) underwent successful redo repair [5–7]. No intraoperative deaths were observed. Table 4: Procedures performed, cardiopulmonary bypass and endoaortic balloon occlusion times Procedures performed  n = 66  Mitral valve repair, n (%)  15 (22.7)   Ring implantation  10 (15.2)   Annular pericardial patch reconstruction  3 (4.5)   Leaflet patch reconstruction  3 (4.5)   Leaflet resection  7 (10.6)   Cleft closure  3 (4.5)   Commissuroplasty  3 (4.5)   Papillary muscle transfer  1 (1.5)   Neochordae implant  4 (6.1)  Mitral valve replacement, n (%)  45 (68.2)   Mechanical  17 (25.8)   Bioprosthetic  28 (42.4)  Tricuspid valve repair, n (%)  8 (12.1)   Ring implantation  3 (4.5)  Tricuspid valve replacement, n (%)  5 (7.6)   Mechanical  1 (1.5)   Bioprosthetic  4 (6.1)  Patent foramen ovale closure, n (%)  1 (1.5)  Cryoablation, n (%)  4 (6.1)  Left ventricular outflow tract septectomy, n (%)  1 (1.5)  Sternotomy conversions, n (%)  6 (9.1)   Lung adhesions  3 (4.5)   Cannulation problems  2 (3.0)   Aorta dissection  1 (1.5)  Intra-aortic balloon pump support, n (%)  2 (3.0)  Cardiopulmonary bypass and endoaortic balloon occlusion times (min) mean ± SD (range)   Cardiopulmonary bypass time  167 ± 49 (91–315)   Endoaortic balloon occlusion time  113 ± 33 (46–213)  Procedures performed  n = 66  Mitral valve repair, n (%)  15 (22.7)   Ring implantation  10 (15.2)   Annular pericardial patch reconstruction  3 (4.5)   Leaflet patch reconstruction  3 (4.5)   Leaflet resection  7 (10.6)   Cleft closure  3 (4.5)   Commissuroplasty  3 (4.5)   Papillary muscle transfer  1 (1.5)   Neochordae implant  4 (6.1)  Mitral valve replacement, n (%)  45 (68.2)   Mechanical  17 (25.8)   Bioprosthetic  28 (42.4)  Tricuspid valve repair, n (%)  8 (12.1)   Ring implantation  3 (4.5)  Tricuspid valve replacement, n (%)  5 (7.6)   Mechanical  1 (1.5)   Bioprosthetic  4 (6.1)  Patent foramen ovale closure, n (%)  1 (1.5)  Cryoablation, n (%)  4 (6.1)  Left ventricular outflow tract septectomy, n (%)  1 (1.5)  Sternotomy conversions, n (%)  6 (9.1)   Lung adhesions  3 (4.5)   Cannulation problems  2 (3.0)   Aorta dissection  1 (1.5)  Intra-aortic balloon pump support, n (%)  2 (3.0)  Cardiopulmonary bypass and endoaortic balloon occlusion times (min) mean ± SD (range)   Cardiopulmonary bypass time  167 ± 49 (91–315)   Endoaortic balloon occlusion time  113 ± 33 (46–213)  SD: standard deviation. Table 4: Procedures performed, cardiopulmonary bypass and endoaortic balloon occlusion times Procedures performed  n = 66  Mitral valve repair, n (%)  15 (22.7)   Ring implantation  10 (15.2)   Annular pericardial patch reconstruction  3 (4.5)   Leaflet patch reconstruction  3 (4.5)   Leaflet resection  7 (10.6)   Cleft closure  3 (4.5)   Commissuroplasty  3 (4.5)   Papillary muscle transfer  1 (1.5)   Neochordae implant  4 (6.1)  Mitral valve replacement, n (%)  45 (68.2)   Mechanical  17 (25.8)   Bioprosthetic  28 (42.4)  Tricuspid valve repair, n (%)  8 (12.1)   Ring implantation  3 (4.5)  Tricuspid valve replacement, n (%)  5 (7.6)   Mechanical  1 (1.5)   Bioprosthetic  4 (6.1)  Patent foramen ovale closure, n (%)  1 (1.5)  Cryoablation, n (%)  4 (6.1)  Left ventricular outflow tract septectomy, n (%)  1 (1.5)  Sternotomy conversions, n (%)  6 (9.1)   Lung adhesions  3 (4.5)   Cannulation problems  2 (3.0)   Aorta dissection  1 (1.5)  Intra-aortic balloon pump support, n (%)  2 (3.0)  Cardiopulmonary bypass and endoaortic balloon occlusion times (min) mean ± SD (range)   Cardiopulmonary bypass time  167 ± 49 (91–315)   Endoaortic balloon occlusion time  113 ± 33 (46–213)  Procedures performed  n = 66  Mitral valve repair, n (%)  15 (22.7)   Ring implantation  10 (15.2)   Annular pericardial patch reconstruction  3 (4.5)   Leaflet patch reconstruction  3 (4.5)   Leaflet resection  7 (10.6)   Cleft closure  3 (4.5)   Commissuroplasty  3 (4.5)   Papillary muscle transfer  1 (1.5)   Neochordae implant  4 (6.1)  Mitral valve replacement, n (%)  45 (68.2)   Mechanical  17 (25.8)   Bioprosthetic  28 (42.4)  Tricuspid valve repair, n (%)  8 (12.1)   Ring implantation  3 (4.5)  Tricuspid valve replacement, n (%)  5 (7.6)   Mechanical  1 (1.5)   Bioprosthetic  4 (6.1)  Patent foramen ovale closure, n (%)  1 (1.5)  Cryoablation, n (%)  4 (6.1)  Left ventricular outflow tract septectomy, n (%)  1 (1.5)  Sternotomy conversions, n (%)  6 (9.1)   Lung adhesions  3 (4.5)   Cannulation problems  2 (3.0)   Aorta dissection  1 (1.5)  Intra-aortic balloon pump support, n (%)  2 (3.0)  Cardiopulmonary bypass and endoaortic balloon occlusion times (min) mean ± SD (range)   Cardiopulmonary bypass time  167 ± 49 (91–315)   Endoaortic balloon occlusion time  113 ± 33 (46–213)  SD: standard deviation. Postoperative course and in-hospital outcome In-hospital deaths are outlined in Table 5. All patients who died underwent MV replacement in isolation (n = 10) or combined with TV repair (n = 2); 3 of the 10 were attempted repairs prior to replacement with ischaemic times of 78, 79 and 91 min, respectively. In-hospital complications and deaths are shown in Table 6. Postoperative low cardiac output syndrome occurred in 3 (n = 3, 4.5%) patients, all of whom were classified as critical clinical status preoperatively. Redo MV repair failure (n = 1, 1.5%) required revision and subsequent replacement through the same incision without further complications. The 30-day and in-hospital survival rates were 87.9% (n = 58) and 80.3% (n = 54), respectively. Causes of in-hospital deaths (n = 12) included low cardiac output syndrome (n = 3, 4.5%) and sepsis-related multiorgan failure (n = 9, 13.6%). The mean length of hospitalization for in-hospital survivors (n = 54) was 28.3 ± 14.1 days (range 7–72) (Fig. 1A). Age above 70 years [odds ratio (OR) 1.08, confidence interval (CI) 1.00–1.16; P = 0.04], critical preoperative status (OR 8.93, CI 1.87–42.66; P = 0.005) and EuroSCORE II (OR 1.03, CI 1.00–1.15; P = 0.049) were the only univariate predictors of deaths identified at the 5% level of significance. Combinations of age above 70 years (OR 1.66, CI 1.02–2.71; P = 0.041), critical preoperative status (OR 23.16, CI 2.57–209.02; P = 0.006) and CPB time (OR 0.97, CI 0.94–0.99; P = 0.033) were the only multivariate mortality predictors proven to be more accurate than the univariate analysis. Table 5: In-hospital deaths (n = 12) Deaths (n = 12)  Number  Percent of 12  Percent of 66  EuroSCORE II, mean ± SD (range)  33.9 ± 28.5 (2.7–82.9)     Age (years), mean ± SD (range)  73.0 ± 7.7 (59.4–85.2)     Female  7  58.3  10.6   Active endocarditis  12  100.0  18.2   Redo cardiac surgery  7  58.3  10.6   Critical preoperative status  3  25  4.5  Organism   Staphylococcus aureus  6  50.0  9.1   Streptococcus intermedius  1  8.3  1.5   Streptococcus bovis  1  8.3  1.5   Enterococcus faecalis  1  8.3  1.5   Culture negative  3  25.0  4.5  Procedure   Isolated mitral valve surgery  10  83.3  15.2   Combined mitral and tricuspid valve surgery  2  16.7  3.0  Mortality interval (days), mean ± SD (range)  19.5 ± 18.2 (1.0–59.0)       Death after 15 days postoperatively  7  58.3  10.6  Sternotomy conversion  2  16.7  3.0  Mean cardiopulmonary bypass time (min), mean ± SD (range)  145.8 ± 33.7 (98.0–209.0)    Mean endoaortic balloon occlusion time (min), mean ± SD (range)  99.7 ± 27.2 (55.0–145.0)    Univariate analysis of in-hospital deaths (n = 66)  Variables  Univariate OR (95% CI)  P-values  Age above 70 years  1.1 (1.003–1.156)  0.041  Female  2.8 (0.760–10.317)  0.120  EuroSCORE II  1.0 (1.000–1.051)  0.049  Redo cardiac surgery  1.4 (0.385–5.085)  0.604  Active endocarditis  1.5 (0.388–5.674)  0.559  Critical clinical status  8.9 (1.869–42.658)  0.007  Cardiopulmonary bypass time  1.0 (0.967–1.003)  0.144  Endoaortic balloon occlusion time  1.0 (0.957–1.006)  0.102  Sternotomy conversion  2.5 (0.388–16.113)  0.330  Valve replacement after attempted repair  3.3 (0.641–16.655)  0.151  Deaths (n = 12)  Number  Percent of 12  Percent of 66  EuroSCORE II, mean ± SD (range)  33.9 ± 28.5 (2.7–82.9)     Age (years), mean ± SD (range)  73.0 ± 7.7 (59.4–85.2)     Female  7  58.3  10.6   Active endocarditis  12  100.0  18.2   Redo cardiac surgery  7  58.3  10.6   Critical preoperative status  3  25  4.5  Organism   Staphylococcus aureus  6  50.0  9.1   Streptococcus intermedius  1  8.3  1.5   Streptococcus bovis  1  8.3  1.5   Enterococcus faecalis  1  8.3  1.5   Culture negative  3  25.0  4.5  Procedure   Isolated mitral valve surgery  10  83.3  15.2   Combined mitral and tricuspid valve surgery  2  16.7  3.0  Mortality interval (days), mean ± SD (range)  19.5 ± 18.2 (1.0–59.0)       Death after 15 days postoperatively  7  58.3  10.6  Sternotomy conversion  2  16.7  3.0  Mean cardiopulmonary bypass time (min), mean ± SD (range)  145.8 ± 33.7 (98.0–209.0)    Mean endoaortic balloon occlusion time (min), mean ± SD (range)  99.7 ± 27.2 (55.0–145.0)    Univariate analysis of in-hospital deaths (n = 66)  Variables  Univariate OR (95% CI)  P-values  Age above 70 years  1.1 (1.003–1.156)  0.041  Female  2.8 (0.760–10.317)  0.120  EuroSCORE II  1.0 (1.000–1.051)  0.049  Redo cardiac surgery  1.4 (0.385–5.085)  0.604  Active endocarditis  1.5 (0.388–5.674)  0.559  Critical clinical status  8.9 (1.869–42.658)  0.007  Cardiopulmonary bypass time  1.0 (0.967–1.003)  0.144  Endoaortic balloon occlusion time  1.0 (0.957–1.006)  0.102  Sternotomy conversion  2.5 (0.388–16.113)  0.330  Valve replacement after attempted repair  3.3 (0.641–16.655)  0.151  CI: confidence interval; OR: odds ratio; SD: standard deviation. Table 5: In-hospital deaths (n = 12) Deaths (n = 12)  Number  Percent of 12  Percent of 66  EuroSCORE II, mean ± SD (range)  33.9 ± 28.5 (2.7–82.9)     Age (years), mean ± SD (range)  73.0 ± 7.7 (59.4–85.2)     Female  7  58.3  10.6   Active endocarditis  12  100.0  18.2   Redo cardiac surgery  7  58.3  10.6   Critical preoperative status  3  25  4.5  Organism   Staphylococcus aureus  6  50.0  9.1   Streptococcus intermedius  1  8.3  1.5   Streptococcus bovis  1  8.3  1.5   Enterococcus faecalis  1  8.3  1.5   Culture negative  3  25.0  4.5  Procedure   Isolated mitral valve surgery  10  83.3  15.2   Combined mitral and tricuspid valve surgery  2  16.7  3.0  Mortality interval (days), mean ± SD (range)  19.5 ± 18.2 (1.0–59.0)       Death after 15 days postoperatively  7  58.3  10.6  Sternotomy conversion  2  16.7  3.0  Mean cardiopulmonary bypass time (min), mean ± SD (range)  145.8 ± 33.7 (98.0–209.0)    Mean endoaortic balloon occlusion time (min), mean ± SD (range)  99.7 ± 27.2 (55.0–145.0)    Univariate analysis of in-hospital deaths (n = 66)  Variables  Univariate OR (95% CI)  P-values  Age above 70 years  1.1 (1.003–1.156)  0.041  Female  2.8 (0.760–10.317)  0.120  EuroSCORE II  1.0 (1.000–1.051)  0.049  Redo cardiac surgery  1.4 (0.385–5.085)  0.604  Active endocarditis  1.5 (0.388–5.674)  0.559  Critical clinical status  8.9 (1.869–42.658)  0.007  Cardiopulmonary bypass time  1.0 (0.967–1.003)  0.144  Endoaortic balloon occlusion time  1.0 (0.957–1.006)  0.102  Sternotomy conversion  2.5 (0.388–16.113)  0.330  Valve replacement after attempted repair  3.3 (0.641–16.655)  0.151  Deaths (n = 12)  Number  Percent of 12  Percent of 66  EuroSCORE II, mean ± SD (range)  33.9 ± 28.5 (2.7–82.9)     Age (years), mean ± SD (range)  73.0 ± 7.7 (59.4–85.2)     Female  7  58.3  10.6   Active endocarditis  12  100.0  18.2   Redo cardiac surgery  7  58.3  10.6   Critical preoperative status  3  25  4.5  Organism   Staphylococcus aureus  6  50.0  9.1   Streptococcus intermedius  1  8.3  1.5   Streptococcus bovis  1  8.3  1.5   Enterococcus faecalis  1  8.3  1.5   Culture negative  3  25.0  4.5  Procedure   Isolated mitral valve surgery  10  83.3  15.2   Combined mitral and tricuspid valve surgery  2  16.7  3.0  Mortality interval (days), mean ± SD (range)  19.5 ± 18.2 (1.0–59.0)       Death after 15 days postoperatively  7  58.3  10.6  Sternotomy conversion  2  16.7  3.0  Mean cardiopulmonary bypass time (min), mean ± SD (range)  145.8 ± 33.7 (98.0–209.0)    Mean endoaortic balloon occlusion time (min), mean ± SD (range)  99.7 ± 27.2 (55.0–145.0)    Univariate analysis of in-hospital deaths (n = 66)  Variables  Univariate OR (95% CI)  P-values  Age above 70 years  1.1 (1.003–1.156)  0.041  Female  2.8 (0.760–10.317)  0.120  EuroSCORE II  1.0 (1.000–1.051)  0.049  Redo cardiac surgery  1.4 (0.385–5.085)  0.604  Active endocarditis  1.5 (0.388–5.674)  0.559  Critical clinical status  8.9 (1.869–42.658)  0.007  Cardiopulmonary bypass time  1.0 (0.967–1.003)  0.144  Endoaortic balloon occlusion time  1.0 (0.957–1.006)  0.102  Sternotomy conversion  2.5 (0.388–16.113)  0.330  Valve replacement after attempted repair  3.3 (0.641–16.655)  0.151  CI: confidence interval; OR: odds ratio; SD: standard deviation. Table 6: In-hospital morbidities (n = 66) Morbidity  n = 66  Revisions, n (%)  7 (10.6)   Residual valve dysfunction  1 (1.5)   Bleeding  6 (9.1)  Low cardiac output syndrome, n (%)  3 (4.5)  Multiorgan failure, n (%)  9 (13.6)  Stroke, n (%)  1 (1.5)  Acute renal dysfunction requiring dialysis, n (%)  6 (9.1)  Respiratory morbidity, n (%)     Residual pleural collections requiring drainage  7 (10.6)   Hospital-acquired pneumonia  8 (12.1)   Tracheostomy  5 (7.6)  Post-surgery rhythm abnormalities, n (%)  14 (21.2)   New postoperative permanent pacemaker  5 (7.6)   Implantation     New onset atrial fibrillation  9 (13.6)  Lymphocoele, n (%)  1 (1.5)  Morbidity  n = 66  Revisions, n (%)  7 (10.6)   Residual valve dysfunction  1 (1.5)   Bleeding  6 (9.1)  Low cardiac output syndrome, n (%)  3 (4.5)  Multiorgan failure, n (%)  9 (13.6)  Stroke, n (%)  1 (1.5)  Acute renal dysfunction requiring dialysis, n (%)  6 (9.1)  Respiratory morbidity, n (%)     Residual pleural collections requiring drainage  7 (10.6)   Hospital-acquired pneumonia  8 (12.1)   Tracheostomy  5 (7.6)  Post-surgery rhythm abnormalities, n (%)  14 (21.2)   New postoperative permanent pacemaker  5 (7.6)   Implantation     New onset atrial fibrillation  9 (13.6)  Lymphocoele, n (%)  1 (1.5)  Table 6: In-hospital morbidities (n = 66) Morbidity  n = 66  Revisions, n (%)  7 (10.6)   Residual valve dysfunction  1 (1.5)   Bleeding  6 (9.1)  Low cardiac output syndrome, n (%)  3 (4.5)  Multiorgan failure, n (%)  9 (13.6)  Stroke, n (%)  1 (1.5)  Acute renal dysfunction requiring dialysis, n (%)  6 (9.1)  Respiratory morbidity, n (%)     Residual pleural collections requiring drainage  7 (10.6)   Hospital-acquired pneumonia  8 (12.1)   Tracheostomy  5 (7.6)  Post-surgery rhythm abnormalities, n (%)  14 (21.2)   New postoperative permanent pacemaker  5 (7.6)   Implantation     New onset atrial fibrillation  9 (13.6)  Lymphocoele, n (%)  1 (1.5)  Morbidity  n = 66  Revisions, n (%)  7 (10.6)   Residual valve dysfunction  1 (1.5)   Bleeding  6 (9.1)  Low cardiac output syndrome, n (%)  3 (4.5)  Multiorgan failure, n (%)  9 (13.6)  Stroke, n (%)  1 (1.5)  Acute renal dysfunction requiring dialysis, n (%)  6 (9.1)  Respiratory morbidity, n (%)     Residual pleural collections requiring drainage  7 (10.6)   Hospital-acquired pneumonia  8 (12.1)   Tracheostomy  5 (7.6)  Post-surgery rhythm abnormalities, n (%)  14 (21.2)   New postoperative permanent pacemaker  5 (7.6)   Implantation     New onset atrial fibrillation  9 (13.6)  Lymphocoele, n (%)  1 (1.5)  Figure 1: View largeDownload slide (A) Length of hospital stay, (B) the Kaplan–Meier analysis for freedom from reintervention and (C) survival. Figure 1: View largeDownload slide (A) Length of hospital stay, (B) the Kaplan–Meier analysis for freedom from reintervention and (C) survival. Mid-term survival, freedom from reoperation, clinical and echocardiographic follow-up A total of 3167.7 patient months (mean 63.2 ± 42.5, median 46.5) were available for analysis of recent mid-term survival, freedom from atrioventricular valve reintervention and clinical status analysis. Up-to-date clinical and echocardiographic data of post-discharge patients (n = 50, 93.9% complete at 12 months) are outlined in Table 7. Incomplete follow-up data of 4 international patients (6.1%) were not incorporated into the mid-term outcome results. Thirty-eight of the subsequent 50 post-discharge patients analysed (76.0%) had follow-up periods longer than 3 years. Six patients died late postoperatively of hepatic carcinoma (63.8 months), stroke (73.5 months), sarcoma (97.3 months), post-transplantation issues (12.5 months), cardiac failure (4.6 months) and unknown cause (23.5 months), respectively. AVVE recurrence was observed in 3 (6.0%) patients, 1 (2.0%) of whom required surgical reintervention 102.4 months postoperatively. The Kaplan–Meier analysis for post-discharge freedom from AVVE reintervention at 10 years was 98.4% (Fig. 1B). The Kaplan–Meier analyses for survival (Fig. 1C) at 5 and 10 years were 72.6% and 69.4%, respectively. New York Heart Association (NYHA) Class I or II status was observed in 47 (94.0%) of the 50 mid-term survivors, with residual MV regurgitation less than Grade I confirmed in all patients (n = 50, 100%). Table 7: Post-discharge clinical and echocardiographic outcomes of late survivors Clinical outcomes (63.2 ± 42.5 months)a  n = 50  NYHA functional class status, n (%)   I  37 (74.0)   II  10 (20.0)   III  3 (6.0)  Late cardiovascular events, n (%)   Stroke/transient ischaemic attack  2 (4.0)   Recurrent endocarditis  3 (6.0)   New onset atrial fibrillation  11 (22.0)   Other cardiac surgery  1 (2.0)   Peripheral vascular intervention  2 (4.0)  Echocardiographic outcomes (56.3 ± 40.8 months)  Mitral valve function   Regurgitation less than Grade I, n (%)  50 (100.0)   Gradient (mmHg), mean ± SD  2.7 ± 2.7 (2.0)   Paravalvular leak, n (%)  1 (2.0)   Systolic anterior motion, n (%)  1 (100.0)  Tricuspid valve function   Regurgitation less than Grade II  50  Mean left ventricular ejection fraction (%), mean ± SD  57.8 ± 10.8  Kaplan–Meier analysis for survival and freedom from reintervention (n = 62)b  Years  Survival (%)  Freedom from reintervention (%)  1  77.4  100.0  3  75.8  100.0  5  72.6  98.4  7  71.0  98.4  10  69.4  98.4  Clinical outcomes (63.2 ± 42.5 months)a  n = 50  NYHA functional class status, n (%)   I  37 (74.0)   II  10 (20.0)   III  3 (6.0)  Late cardiovascular events, n (%)   Stroke/transient ischaemic attack  2 (4.0)   Recurrent endocarditis  3 (6.0)   New onset atrial fibrillation  11 (22.0)   Other cardiac surgery  1 (2.0)   Peripheral vascular intervention  2 (4.0)  Echocardiographic outcomes (56.3 ± 40.8 months)  Mitral valve function   Regurgitation less than Grade I, n (%)  50 (100.0)   Gradient (mmHg), mean ± SD  2.7 ± 2.7 (2.0)   Paravalvular leak, n (%)  1 (2.0)   Systolic anterior motion, n (%)  1 (100.0)  Tricuspid valve function   Regurgitation less than Grade II  50  Mean left ventricular ejection fraction (%), mean ± SD  57.8 ± 10.8  Kaplan–Meier analysis for survival and freedom from reintervention (n = 62)b  Years  Survival (%)  Freedom from reintervention (%)  1  77.4  100.0  3  75.8  100.0  5  72.6  98.4  7  71.0  98.4  10  69.4  98.4  a 93.9% complete. b Excluding those lost to international follow-up (n = 4, 6.1%). NYHA: New York Heart Association; SD: standard deviation. Table 7: Post-discharge clinical and echocardiographic outcomes of late survivors Clinical outcomes (63.2 ± 42.5 months)a  n = 50  NYHA functional class status, n (%)   I  37 (74.0)   II  10 (20.0)   III  3 (6.0)  Late cardiovascular events, n (%)   Stroke/transient ischaemic attack  2 (4.0)   Recurrent endocarditis  3 (6.0)   New onset atrial fibrillation  11 (22.0)   Other cardiac surgery  1 (2.0)   Peripheral vascular intervention  2 (4.0)  Echocardiographic outcomes (56.3 ± 40.8 months)  Mitral valve function   Regurgitation less than Grade I, n (%)  50 (100.0)   Gradient (mmHg), mean ± SD  2.7 ± 2.7 (2.0)   Paravalvular leak, n (%)  1 (2.0)   Systolic anterior motion, n (%)  1 (100.0)  Tricuspid valve function   Regurgitation less than Grade II  50  Mean left ventricular ejection fraction (%), mean ± SD  57.8 ± 10.8  Kaplan–Meier analysis for survival and freedom from reintervention (n = 62)b  Years  Survival (%)  Freedom from reintervention (%)  1  77.4  100.0  3  75.8  100.0  5  72.6  98.4  7  71.0  98.4  10  69.4  98.4  Clinical outcomes (63.2 ± 42.5 months)a  n = 50  NYHA functional class status, n (%)   I  37 (74.0)   II  10 (20.0)   III  3 (6.0)  Late cardiovascular events, n (%)   Stroke/transient ischaemic attack  2 (4.0)   Recurrent endocarditis  3 (6.0)   New onset atrial fibrillation  11 (22.0)   Other cardiac surgery  1 (2.0)   Peripheral vascular intervention  2 (4.0)  Echocardiographic outcomes (56.3 ± 40.8 months)  Mitral valve function   Regurgitation less than Grade I, n (%)  50 (100.0)   Gradient (mmHg), mean ± SD  2.7 ± 2.7 (2.0)   Paravalvular leak, n (%)  1 (2.0)   Systolic anterior motion, n (%)  1 (100.0)  Tricuspid valve function   Regurgitation less than Grade II  50  Mean left ventricular ejection fraction (%), mean ± SD  57.8 ± 10.8  Kaplan–Meier analysis for survival and freedom from reintervention (n = 62)b  Years  Survival (%)  Freedom from reintervention (%)  1  77.4  100.0  3  75.8  100.0  5  72.6  98.4  7  71.0  98.4  10  69.4  98.4  a 93.9% complete. b Excluding those lost to international follow-up (n = 4, 6.1%). NYHA: New York Heart Association; SD: standard deviation. DISCUSSION The role of minimally invasive surgery for acute or convalescent AVVE is not defined. We established endoscopic atrioventricular valve surgery by port access (EPAS) as our routine approach for all cases of isolated mitral and TV disease since February 1997 and investigated the clinical and echocardiographic outcomes of 66 consecutive patients with isolated AVVE. The incidence of acute AVVE (n = 41, 61.1%), septic/pending septic shock (n = 9, 13.6%), congestive cardiac failure presentation (n = 58, 78.8%) and microbiological profile in our series correlates well with the patient characteristics described in contemporary reports [3–10]. The empirical administration of antibiotics by referring physicians and the cost-related limitation of antinuclear antibody and antiporcine bioprosthesis allergic assays may contribute to a higher incidence of blood culture-negative endocarditis (n = 25, 37.9%) in our series [28]. A variety of simple and complex EPAS infection control and valve reconstruction procedures were performed without compromising the well-defined principles of infective endocarditis surgery [4]. EPAS provides direct and focused access to the target valves, with CPB and endoaortic inflation times comparable with those in contemporary sternotomy approach reports [5]. The survival benefit of valve repair is well described [6, 7], and we elected to attempt redo repair as the first-line therapy in a redo setting. We considered valve replacement only if the post-debridement morphology prohibited a durable repair outcome. Homografts were not utilized in our series. One new neurological event (1.5%), which was not EPAS-AVVE related, occurred on the 10th postoperative day in a critically ill patient secondary to MV mechanical prosthesis thrombosis. The patient was eventually discharged home after 72 days in the hospital. All revisions (n = 7, 10.1%) were performed through the same incisions without residual bleeding, difficulty in achieving haemostasis or valve-related complications. Postoperative dialysis was required in 6 (9.1%) patients, 5 (7.6%) of whom were on dialysis preoperatively. The observed 30-day mortality rate, within the context of a mean EuroSCORE II of 31.2 ± 24.9% and which includes operative mortality (n = 8, 12.1%), compares well with those from contemporary AVVE series [4–10]. In-hospital survival was 80.3% (n = 54). In addition to the well-described independent risk factors for death [4–7, 22, 29, 30], which include prosthetic AVVE, staphylococcal AVVE, septic shock, congestive heart failure, stroke and intracardiac abscess, univariate and multivariate logistical regression analysis identified age, EuroSCORE II and critical preoperative clinical status as significant additional contributors to in-hospital deaths in our series. Clinical and echocardiographic follow-up of post-discharge survivors (n = 50, 93.9% complete) confirmed favourable outcomes comparable with those from current sternotomy access reports [4–10, 22]. No post-discharge deaths were related to AVVE or EPAS. The rates of survival and freedom from reintervention at 10 years were 69.4% and 98.4%, respectively. Recurrent AVVE occurred in 3 surviving patients (6.0%), one of whom required reoperation (102.4 months) for unsuccessfully medical therapy. Despite EPAS-AVVE being the routine approach at our institution, we caution against undertaking EPAS-AVVE during the initial learning curve of minimally invasive atrioventricular valve surgery and encourage experienced centres to offer patients the potential benefits of a minimally invasive approach. Limitations This series reflects the outcomes of the current surgical team of a single centre with extensive EPAS experience. The enrolment period of this study was 11.2 years, and its impact on our conclusions was not subjected to sensitivity analyses. The use of sternotomy access has been abandoned since the introduction of our minimally invasive port access surgery program, which is routine for isolated atrioventricular valve disease at our institution. All patients were offered minimally invasive port access surgery with the intention to the treat, which resulted in the absence of a control group or propensity matching. The EuroSCORE II, which is standardized for sternotomy access, was used as the control for operative outcomes. CONCLUSION Complex atrioventricular valve surgery in the context of AVVE can be performed endoscopically in experienced centres with favourable perioperative survival and mid-term clinical and echocardiographic outcomes. The presence of isolated AVVE should not deter experienced surgeons from offering patients the full range of potential benefits associated with minimally invasive cardiac surgery. ACKNOWLEDGEMENTS The authors wish to thank Garth Zietsman for his statistical analysis and contribution to this manuscript. Conflict of interest: Frank Van Praet and Filip Casselman serve on the Edwards Lifesciences Medical Advisory Board for minimally invasive cardiac surgery. REFERENCES 1 Habib G, Lancellotti P, Antunes MJ, Bongiorni MG, Casalta JP, Del Zotti F et al.   2015 ESC Guidelines for the management of infective endocarditis: the Task Force for the Management of Infective Endocarditis of the European Society of Cardiology (ESC). Endorsed by: European Association for Cardio-Thoracic Surgery (EACTS), the European Association of Nuclear Medicine (EANM). Eur Heart J  2015; 36: 3075– 128. Google Scholar CrossRef Search ADS PubMed  2 Baddour LM, Wilson WR, Bayer AS, Fowler VGJr, Bolger AF, Levison ME et al.   Infective endocarditis: diagnosis, antimicrobial therapy, and management of complications a statement for healthcare professionals from the Committee on Rheumatic Fever, Endocarditis, and Kawasaki Disease, Council on Cardiovascular Disease in the Young, and the Councils on Clinical Cardiology, Stroke, and Cardiovascular Surgery and Anesthesia, American Heart Association: endorsed by the Infectious Diseases Society of America. Circulation  2005; 111: e394– 434. Google Scholar CrossRef Search ADS PubMed  3 Thuny F, Grisoli D, Collart F, Habib G, Raoult D. Management of infective endocarditis: challenges and perspectives. Lancet  2012; 379: 965– 75. Google Scholar CrossRef Search ADS PubMed  4 David TE, Gavra G, Feindel CM, Regesta T, Armstrong S, Maganti MD. Surgical treatment of active infective endocarditis: a continued challenge. J Thorac Cardiovasc Surg  2007; 133: 144– 9. Google Scholar CrossRef Search ADS PubMed  5 de Kerchove L, Vanoverschelde JL, Poncelet A, Glineur D, Rubay J, Zech F et al.   Reconstructive surgery in active mitral valve endocarditis: feasibility, safety and durability. Eur J Cardiothorac Surg  2007; 31: 592– 9. Google Scholar CrossRef Search ADS PubMed  6 de Kerchove L, Price J, Tamer S, Glineur D, Momeni M, Noirhomme P et al.   Extending the scope of mitral valve repair in active endocarditis. J Thorac Cardiovasc Surg  2012; 143: S91– 5. Google Scholar CrossRef Search ADS PubMed  7 Shang E, Forrest GN, Chizmar T, Chim J, Brown JM, Zhan M et al.   Mitral valve infective endocarditis: benefit of early operation and aggressive use of repair. Ann Thorac Surg  2009; 87: 1728– 33. Google Scholar CrossRef Search ADS PubMed  8 Wallace AG, Young WG, Osterhout S. Treatment of acute bacterial endocarditis by valve excision and replacement. Circulation  1965; 31: 450– 3. Google Scholar CrossRef Search ADS PubMed  9 Pant S, Patel NJ, Deshmukh A, Golwala H, Patel N, Badheka A et al.   Trends in infective endocarditis incidence, microbiology, and valve replacement in the United States from 2000 to 2011. J Am Coll Cardiol  2015; 65: 2070– 6. Google Scholar CrossRef Search ADS PubMed  10 Thuny F, Giorgi R, Habachi R, Ansaldi S, Le Dolley Y, Casalta JP et al.   Excess mortality and morbidity in patients surviving infective endocarditis. Am Heart J  2012; 164: 94– 101. Google Scholar CrossRef Search ADS PubMed  11 Casselman FP, Van Slycke S, Dom H, Lambrechts DL, Vermeulen Y, Vanermen H. Endoscopic mitral valve repair: feasible, reproducible, and durable. J Thorac Cardiovasc Surg  2003; 125: 273– 82. Google Scholar CrossRef Search ADS PubMed  12 Casselman FP, La Meir M, Jeanmart H, Mazzarro E, Coddens J, Van Praet F et al.   Endoscopic mitral and tricuspid valve surgery after previous cardiac surgery. Circulation  2007; 116: I270– 5. Google Scholar CrossRef Search ADS PubMed  13 van der Merwe J, Casselman F, Stockman B, Vermeulen Y, Degrieck I, Van Praet F. Late redo-port access surgery after port access surgery. Interact CardioVasc Thorac Surg  2016; 22: 13– 8. Google Scholar CrossRef Search ADS PubMed  14 van der Merwe J, Casselman F, Stockman B, Vermeulen Y, Degrieck I, Van Praet F. Endoscopic atrioventricular valve surgery in adults with difficult-to-access uncorrected congenital chest wall deformities. Interact CardioVasc Thorac Surg  2016; 23: 851– 5. Google Scholar CrossRef Search ADS PubMed  15 van der Merwe J, Beelen R, Martens S, Van Praet F. Single-stage minimally invasive surgery for synchronous primary pulmonary adenocarcinoma and left atrial myxoma. Ann Thorac Surg  2015; 100: 2352– 4. Google Scholar CrossRef Search ADS PubMed  16 van der Merwe J, Casselman F, Stockman B, Vermeulen Y, Degrieck I, Van Praet F. Endoscopic port access surgery for late orthotopic cardiac transplantation atrioventricular valve disease. J Heart Valve Dis  2017; 26: 124– 9. Google Scholar PubMed  17 van der Merwe J, Casselman F, Beelen R, Van Praet F. Total percutaneous cardiopulmonary bypass for robotic and endoscopic atrioventricular valve surgery. Innovations  2017; 12: 296– 9. Google Scholar PubMed  18 Habib G, Badano L, Tribouilloy C, Vilacosta I, Zamorano JL, Galderisi M et al.   Recommendations for the practice of echocardiography in infective endocarditis. Eur J Echocardiogr  2010; 11: 202– 19. Google Scholar CrossRef Search ADS PubMed  19 Casselman F, Aramendi J, Bentala M, Candolfi P, Coppoolse R, Gersak B et al.   Endoaortic clamping does not increase the risk of stroke in minimal access mitral valve surgery: a multicenter experience. Ann Thorac Surg  2015; 100: 1334– 9. Google Scholar CrossRef Search ADS PubMed  20 Hill EE, Herijgers P, Claus P, Vanderschueren S, Peetermans WE, Herregods MC. Abscess in infective endocarditis: the value of transesophageal echocardiography and outcome: a 5-year study. Am Heart J  2007; 154: 923– 8. Google Scholar CrossRef Search ADS PubMed  21 Barsic B, Dickerman S, Krajinovic V, Pappas P, Altclas J, Carosi G et al.   Influence of the timing of cardiac surgery on the outcome of patients with infective endocarditis and stroke. Clin Infect Dis  2013; 56: 209– 17. Google Scholar CrossRef Search ADS PubMed  22 Prendergast BD, Tornos P. Surgery for infective endocarditis: who and when? Circulation  2010; 121: 1141– 52. Google Scholar CrossRef Search ADS PubMed  23 Okazaki S, Yoshioka D, Sakaguchi M, Sawa Y, Mochizuki H, Kitagawa K. Acute ischemic brain lesions in infective endocarditis: incidence, related factors, and postoperative outcome. Cerebrovasc Dis  2013; 35: 155– 62. Google Scholar CrossRef Search ADS PubMed  24 Garcia-Cabrera E, Fernandez-Hidalgo N, Almirante B, Ivanova-Georgieva R, Noureddine M, Plata A et al.   Neurological complications of infective endocarditis: risk factors, outcome, and impact of cardiac surgery: a multicenter observational study. Circulation  2013; 127: 2272– 84. Google Scholar CrossRef Search ADS PubMed  25 David TE, Feindel CM, Armstrong S, Sun Z. Reconstruction of the mitral annulus: a ten-year experience. J Thorac Cardiovasc Surg  1995; 110: 1323. Google Scholar CrossRef Search ADS PubMed  26 Casselman F, Vanermen H. Idiopathic hypertrophic subaortic stenosis can be treated endoscopically. J Thorac Cardiovasc Surg  2002; 124: 1248– 9. Google Scholar CrossRef Search ADS PubMed  27 Baddour LM, Epstein AE, Erickson CC, Knight BP, Levison ME, Lockhart PB et al.   Update on cardiovascular implantable electronic device infections and their management: a scientific statement from the American Heart Association. Circulation  2010; 121: 458– 77. Google Scholar CrossRef Search ADS PubMed  28 Tattevin P, Watt G, Revest M, Arvieux C, Fournier PE. Update on blood culture-negative endocarditis. Med Mal Infect  2015; 45: 1– 8. Google Scholar CrossRef Search ADS PubMed  29 Aksoy O, Sexton DJ, Wang A, Pappas PA, Kourany W, Chu V et al.   Early surgery in patients with infective endocarditis: a propensity score analysis. Clin Infect Dis  2007; 44: 364– 72. Google Scholar CrossRef Search ADS PubMed  30 Revilla A, López J, Vilacosta I, Villacorta E, Rollán MJ, Echevarría JR et al.   Clinical and prognostic profile of patients with infective endocarditis who need urgent surgery. Eur Heart J  2007; 28: 65– 71. Google Scholar CrossRef Search ADS PubMed  © The Author(s) 2018. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved. This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/about_us/legal/notices) http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Interactive CardioVascular and Thoracic Surgery Oxford University Press

Endoscopic port access surgery for isolated atrioventricular valve endocarditis

Loading next page...
 
/lp/ou_press/endoscopic-port-access-surgery-for-isolated-atrioventricular-valve-w0b9Wg0Txz
Publisher
Oxford University Press
Copyright
© The Author(s) 2018. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.
ISSN
1569-9293
eISSN
1569-9285
D.O.I.
10.1093/icvts/ivy103
Publisher site
See Article on Publisher Site

Abstract

Abstract OBJECTIVES Our goal was to report the clinical and echocardiographic outcomes of endoscopic port access surgery for isolated active and convalescent atrioventricular valve endocarditis (AVVE). METHODS Our current surgical team performed endoscopic port access surgery in 66 consecutive patients with isolated AVVE (mean age, 65.5 ± 12.7 years, 37.9% women, mean EuroSCORE II 31.2 ± 24.9%, 45.5% prosthetic AVVE, Staphylococcus aureus 22.2%), between 1 May 2004 and 31 July 2015. Isolated mitral valve endocarditis was present in 53 (80.4%) patients, including 11 (16.7%) with periannular abscesses. RESULTS Procedures performed included mitral valve repair (n = 15, 22.7%) and left ventricular septal myomectomy (n = 1, 1.5%). Reasons for sternotomy conversion (n = 6, 9.1%) included lung adhesions (n = 3, 4.5%). The mean cardiopulmonary bypass and ischaemic times were 167.2 ±48.7 and 112.6 ± 33.3 min, respectively. In-hospital morbidities included revision for bleeding (n = 6, 9.1%). The 30-day survival rate was 87.9%. Causes of in-hospital deaths (n = 12) included low cardiac output syndrome (n = 3, 4.5%). Age, critical preoperative status and EuroSCORE II score predicted deaths individually at the 5% level of significance. The Kaplan–Meier analyses (mean 63.2 ± 42.5 months) for survival and freedom from AVVE reintervention at 10 years were 69.4% and 98.4%, respectively. Of the mid-term survivors (n = 50, 93.9% complete), 94.0% (n = 47) classified as New York Heart Association (NYHA) II or less with no mitral valve regurgitation greater than Grade I. CONCLUSIONS Complex atrioventricular valve surgery in the context of AVVE can be endoscopically performed in experienced centres and should not deter surgeons from offering patients with AVVE the potential benefits of minimally invasive cardiac surgery. Minimally invasive cardiac surgery, Mitral and tricuspid valve disease, Endocarditis, Outcome INTRODUCTION We are witnessing a progressive evolution in the clinical approach to infective endocarditis, which includes specialized guidelines within a multidisciplinary team context [1, 2]. The indications for surgical intervention are well described [3], and the procedure is currently performed through a sternotomy or right thoracotomy access [4] to allow aggressive debridement, infection control and restoration of valve morphology, either by reconstructive [5–7] or replacement procedures [8, 9]. The dismal survival and quality-of-life outcomes are well documented [10]. The role of minimally invasive and catheter-based therapies for isolated atrioventricular valve endocarditis (AVVE) remains undefined in an era of ongoing technological advances and increasing patient expectations. We initiated our minimally invasive atrioventricular valve program by Port Access™ (endoscopic port access surgery [EPAS]) in February 1997 and provide an in-depth overview of our experience in 66 consecutive patients who underwent surgery for isolated acute and convalescent AVVE. MATERIALS AND METHODS This is a retrospective observational study of a single-centre database. Our current surgical team performed EPAS in 66 consecutive patients with isolated AVVE between 1 May 2004 and 31 July 2015, with the relevant preoperative patient characteristics outlined in Table 1. No patient selection or exclusion criteria were applied because access via sternotomy for diseased mitral and tricuspid valves (TVs) was abandoned with the introduction of our EPAS program in 1997. The mean and median EuroSCOREs II were 31.2 ± 24.9 and 23.2, respectively. The surgical indications, which may be multiple per patient, are described in Table 2. The microbiological profiles are outlined in Table 3. Table 1: Preoperative patient characteristics Variables  n = 66  Age (years), mean ± SD (range)  65.5 ± 12.7 (29.5–85.3)  Age above 70 years, n (%)  26 (39.4)  Female, n (%)  25 (37.9)  Body mass index (kg/m2), mean ± SD (range)  27.6 ± 5.1 (22.5–42.2)  Active endocarditis, n (%)  41 (62.1)  Convalescent- or blood culture negative endocarditis, n (%)  25 (37.9)  Comorbidities present, n (%)   Previous cardiac surgery  34 (51.5)   Chronic obstructive pulmonary disease  7 (10.6)   Permanent pacemaker/internal defibrillator  12 (18.2)   Peripheral vascular disease  17 (25.8)   Renal dysfunction  13 (19.7)   Dialysis  5 (7.6)   Pulmonary hypertension  6 (9.1)   Hypertrophic obstructive cardiomyopathy  1 (1.5)   Marfan syndrome  1 (1.5)  Congestive cardiac failure, n (%)  52 (78.8)  Cerebrovascular embolization/stroke, n (%)  12 (18.2)  Critical preoperative state, n (%)  9 (13.6)  EuroSCORE II   Mean ± SD (range)  31.2 ± 24.9 (1.7–97.8)   0–10, n (%)  13 (19.7)   11–40, n (%)  31 (47.0)   41–70, n (%)  13 (19.7)   71–100, n (%)  9 (13.6)  Impaired left ventricle function (<50%), n (%)  5 (7.6)  Variables  n = 66  Age (years), mean ± SD (range)  65.5 ± 12.7 (29.5–85.3)  Age above 70 years, n (%)  26 (39.4)  Female, n (%)  25 (37.9)  Body mass index (kg/m2), mean ± SD (range)  27.6 ± 5.1 (22.5–42.2)  Active endocarditis, n (%)  41 (62.1)  Convalescent- or blood culture negative endocarditis, n (%)  25 (37.9)  Comorbidities present, n (%)   Previous cardiac surgery  34 (51.5)   Chronic obstructive pulmonary disease  7 (10.6)   Permanent pacemaker/internal defibrillator  12 (18.2)   Peripheral vascular disease  17 (25.8)   Renal dysfunction  13 (19.7)   Dialysis  5 (7.6)   Pulmonary hypertension  6 (9.1)   Hypertrophic obstructive cardiomyopathy  1 (1.5)   Marfan syndrome  1 (1.5)  Congestive cardiac failure, n (%)  52 (78.8)  Cerebrovascular embolization/stroke, n (%)  12 (18.2)  Critical preoperative state, n (%)  9 (13.6)  EuroSCORE II   Mean ± SD (range)  31.2 ± 24.9 (1.7–97.8)   0–10, n (%)  13 (19.7)   11–40, n (%)  31 (47.0)   41–70, n (%)  13 (19.7)   71–100, n (%)  9 (13.6)  Impaired left ventricle function (<50%), n (%)  5 (7.6)  SD: standard deviation. Table 1: Preoperative patient characteristics Variables  n = 66  Age (years), mean ± SD (range)  65.5 ± 12.7 (29.5–85.3)  Age above 70 years, n (%)  26 (39.4)  Female, n (%)  25 (37.9)  Body mass index (kg/m2), mean ± SD (range)  27.6 ± 5.1 (22.5–42.2)  Active endocarditis, n (%)  41 (62.1)  Convalescent- or blood culture negative endocarditis, n (%)  25 (37.9)  Comorbidities present, n (%)   Previous cardiac surgery  34 (51.5)   Chronic obstructive pulmonary disease  7 (10.6)   Permanent pacemaker/internal defibrillator  12 (18.2)   Peripheral vascular disease  17 (25.8)   Renal dysfunction  13 (19.7)   Dialysis  5 (7.6)   Pulmonary hypertension  6 (9.1)   Hypertrophic obstructive cardiomyopathy  1 (1.5)   Marfan syndrome  1 (1.5)  Congestive cardiac failure, n (%)  52 (78.8)  Cerebrovascular embolization/stroke, n (%)  12 (18.2)  Critical preoperative state, n (%)  9 (13.6)  EuroSCORE II   Mean ± SD (range)  31.2 ± 24.9 (1.7–97.8)   0–10, n (%)  13 (19.7)   11–40, n (%)  31 (47.0)   41–70, n (%)  13 (19.7)   71–100, n (%)  9 (13.6)  Impaired left ventricle function (<50%), n (%)  5 (7.6)  Variables  n = 66  Age (years), mean ± SD (range)  65.5 ± 12.7 (29.5–85.3)  Age above 70 years, n (%)  26 (39.4)  Female, n (%)  25 (37.9)  Body mass index (kg/m2), mean ± SD (range)  27.6 ± 5.1 (22.5–42.2)  Active endocarditis, n (%)  41 (62.1)  Convalescent- or blood culture negative endocarditis, n (%)  25 (37.9)  Comorbidities present, n (%)   Previous cardiac surgery  34 (51.5)   Chronic obstructive pulmonary disease  7 (10.6)   Permanent pacemaker/internal defibrillator  12 (18.2)   Peripheral vascular disease  17 (25.8)   Renal dysfunction  13 (19.7)   Dialysis  5 (7.6)   Pulmonary hypertension  6 (9.1)   Hypertrophic obstructive cardiomyopathy  1 (1.5)   Marfan syndrome  1 (1.5)  Congestive cardiac failure, n (%)  52 (78.8)  Cerebrovascular embolization/stroke, n (%)  12 (18.2)  Critical preoperative state, n (%)  9 (13.6)  EuroSCORE II   Mean ± SD (range)  31.2 ± 24.9 (1.7–97.8)   0–10, n (%)  13 (19.7)   11–40, n (%)  31 (47.0)   41–70, n (%)  13 (19.7)   71–100, n (%)  9 (13.6)  Impaired left ventricle function (<50%), n (%)  5 (7.6)  SD: standard deviation. Table 2: Surgical indications Surgical indications  n = 66  Isolated mitral valve endocarditis, n (%)  53 (80.3)   Native valve endocarditis  28 (42.4)   Prosthetic valve endocarditis  25 (37.9)    Previous repair  12 (18.2)    Previous replacement  13 (19.7)     Mechanical prosthesis  10 (15.2)     Biological prosthetic  3 (4.5)   Periannular abscess or fistulous tract  11 (16.7)  Isolated tricuspid valve endocarditis, n (%)  6 (9.1)   Native valve endocarditis  6 (9.1)  Combined mitral- and tricuspid valve endocarditis, n (%)  7 (10.6)   Native valve endocarditis  2 (3.0)   Mitral- or tricuspid valve prosthetic endocarditis  5 (7.6)  Device related endocarditis, n (%)  11 (16.7)  Atrial fibrillation, n (%)  4 (6.1)  Left ventricular outflow tract obstruction, n (%)  1 (1.5)  Patent foramen ovale, n (%)  1 (1.5)  Time interval between previous cardiac surgery and AVVE presentation  Previous cardiac procedure  Years  MV repair (n = 14, 21.2%), mean ± SD (range)  5.7 ± 6.4 (0.1–21.2)  MV replacement (n = 16, 24.2%), mean ± SD (range)  11.7 ± 8.3 (0.2–27.5)  TV surgery (repair: n = 3, 4.5%; replacement: n = 1, 1.5%), mean ± SD (range)  10.8 ± 10.7 (0.3–21.6)  Pacemaker/internal defibrillator implantation (n = 11, 16.7%), mean ± SD (range)  5.2 ± 6.8 (0.2–21.8)  Isolated cryoablation (n = 1, 1.5%)  0.2  Surgical indications  n = 66  Isolated mitral valve endocarditis, n (%)  53 (80.3)   Native valve endocarditis  28 (42.4)   Prosthetic valve endocarditis  25 (37.9)    Previous repair  12 (18.2)    Previous replacement  13 (19.7)     Mechanical prosthesis  10 (15.2)     Biological prosthetic  3 (4.5)   Periannular abscess or fistulous tract  11 (16.7)  Isolated tricuspid valve endocarditis, n (%)  6 (9.1)   Native valve endocarditis  6 (9.1)  Combined mitral- and tricuspid valve endocarditis, n (%)  7 (10.6)   Native valve endocarditis  2 (3.0)   Mitral- or tricuspid valve prosthetic endocarditis  5 (7.6)  Device related endocarditis, n (%)  11 (16.7)  Atrial fibrillation, n (%)  4 (6.1)  Left ventricular outflow tract obstruction, n (%)  1 (1.5)  Patent foramen ovale, n (%)  1 (1.5)  Time interval between previous cardiac surgery and AVVE presentation  Previous cardiac procedure  Years  MV repair (n = 14, 21.2%), mean ± SD (range)  5.7 ± 6.4 (0.1–21.2)  MV replacement (n = 16, 24.2%), mean ± SD (range)  11.7 ± 8.3 (0.2–27.5)  TV surgery (repair: n = 3, 4.5%; replacement: n = 1, 1.5%), mean ± SD (range)  10.8 ± 10.7 (0.3–21.6)  Pacemaker/internal defibrillator implantation (n = 11, 16.7%), mean ± SD (range)  5.2 ± 6.8 (0.2–21.8)  Isolated cryoablation (n = 1, 1.5%)  0.2  AVVE: atrioventricular valve endocarditis; MV: mitral valve; SD: standard deviation; TV: tricuspid valve. Table 2: Surgical indications Surgical indications  n = 66  Isolated mitral valve endocarditis, n (%)  53 (80.3)   Native valve endocarditis  28 (42.4)   Prosthetic valve endocarditis  25 (37.9)    Previous repair  12 (18.2)    Previous replacement  13 (19.7)     Mechanical prosthesis  10 (15.2)     Biological prosthetic  3 (4.5)   Periannular abscess or fistulous tract  11 (16.7)  Isolated tricuspid valve endocarditis, n (%)  6 (9.1)   Native valve endocarditis  6 (9.1)  Combined mitral- and tricuspid valve endocarditis, n (%)  7 (10.6)   Native valve endocarditis  2 (3.0)   Mitral- or tricuspid valve prosthetic endocarditis  5 (7.6)  Device related endocarditis, n (%)  11 (16.7)  Atrial fibrillation, n (%)  4 (6.1)  Left ventricular outflow tract obstruction, n (%)  1 (1.5)  Patent foramen ovale, n (%)  1 (1.5)  Time interval between previous cardiac surgery and AVVE presentation  Previous cardiac procedure  Years  MV repair (n = 14, 21.2%), mean ± SD (range)  5.7 ± 6.4 (0.1–21.2)  MV replacement (n = 16, 24.2%), mean ± SD (range)  11.7 ± 8.3 (0.2–27.5)  TV surgery (repair: n = 3, 4.5%; replacement: n = 1, 1.5%), mean ± SD (range)  10.8 ± 10.7 (0.3–21.6)  Pacemaker/internal defibrillator implantation (n = 11, 16.7%), mean ± SD (range)  5.2 ± 6.8 (0.2–21.8)  Isolated cryoablation (n = 1, 1.5%)  0.2  Surgical indications  n = 66  Isolated mitral valve endocarditis, n (%)  53 (80.3)   Native valve endocarditis  28 (42.4)   Prosthetic valve endocarditis  25 (37.9)    Previous repair  12 (18.2)    Previous replacement  13 (19.7)     Mechanical prosthesis  10 (15.2)     Biological prosthetic  3 (4.5)   Periannular abscess or fistulous tract  11 (16.7)  Isolated tricuspid valve endocarditis, n (%)  6 (9.1)   Native valve endocarditis  6 (9.1)  Combined mitral- and tricuspid valve endocarditis, n (%)  7 (10.6)   Native valve endocarditis  2 (3.0)   Mitral- or tricuspid valve prosthetic endocarditis  5 (7.6)  Device related endocarditis, n (%)  11 (16.7)  Atrial fibrillation, n (%)  4 (6.1)  Left ventricular outflow tract obstruction, n (%)  1 (1.5)  Patent foramen ovale, n (%)  1 (1.5)  Time interval between previous cardiac surgery and AVVE presentation  Previous cardiac procedure  Years  MV repair (n = 14, 21.2%), mean ± SD (range)  5.7 ± 6.4 (0.1–21.2)  MV replacement (n = 16, 24.2%), mean ± SD (range)  11.7 ± 8.3 (0.2–27.5)  TV surgery (repair: n = 3, 4.5%; replacement: n = 1, 1.5%), mean ± SD (range)  10.8 ± 10.7 (0.3–21.6)  Pacemaker/internal defibrillator implantation (n = 11, 16.7%), mean ± SD (range)  5.2 ± 6.8 (0.2–21.8)  Isolated cryoablation (n = 1, 1.5%)  0.2  AVVE: atrioventricular valve endocarditis; MV: mitral valve; SD: standard deviation; TV: tricuspid valve. Table 3: Microbiological profile Microbiological profile  n = 66  Streptococcus species, n (%)  19 (28.8)   viridans  9 (13.6)   sanguinus  1 (1.5)   mitis  1 (1.5)   agalactiae  2 (3.0)   bovis  1 (1.5)  Staphylococcus species, n (%)  20 (30.3)   aureus  14 (21.2)   lugdunensis  1 (1.5)   epidermidis  2 (3.0)   schleiferi  1 (1.5)   indifference  2 (3.0)  Intermedius Enterococcus species, n (%)  5 (7.6)   fecaelis (formerly Streptococcus fecaelis)  5 (7.6)  Fungal, n (%)  1 (1.5)   Candida albicans  1 (1.5)  Other, n (%)  1 (1.5)   Clostridium perfringens  1 (1.5)  Culture-negative endocarditis, n (%)  25 (37.8)  Microbiological profile  n = 66  Streptococcus species, n (%)  19 (28.8)   viridans  9 (13.6)   sanguinus  1 (1.5)   mitis  1 (1.5)   agalactiae  2 (3.0)   bovis  1 (1.5)  Staphylococcus species, n (%)  20 (30.3)   aureus  14 (21.2)   lugdunensis  1 (1.5)   epidermidis  2 (3.0)   schleiferi  1 (1.5)   indifference  2 (3.0)  Intermedius Enterococcus species, n (%)  5 (7.6)   fecaelis (formerly Streptococcus fecaelis)  5 (7.6)  Fungal, n (%)  1 (1.5)   Candida albicans  1 (1.5)  Other, n (%)  1 (1.5)   Clostridium perfringens  1 (1.5)  Culture-negative endocarditis, n (%)  25 (37.8)  Table 3: Microbiological profile Microbiological profile  n = 66  Streptococcus species, n (%)  19 (28.8)   viridans  9 (13.6)   sanguinus  1 (1.5)   mitis  1 (1.5)   agalactiae  2 (3.0)   bovis  1 (1.5)  Staphylococcus species, n (%)  20 (30.3)   aureus  14 (21.2)   lugdunensis  1 (1.5)   epidermidis  2 (3.0)   schleiferi  1 (1.5)   indifference  2 (3.0)  Intermedius Enterococcus species, n (%)  5 (7.6)   fecaelis (formerly Streptococcus fecaelis)  5 (7.6)  Fungal, n (%)  1 (1.5)   Candida albicans  1 (1.5)  Other, n (%)  1 (1.5)   Clostridium perfringens  1 (1.5)  Culture-negative endocarditis, n (%)  25 (37.8)  Microbiological profile  n = 66  Streptococcus species, n (%)  19 (28.8)   viridans  9 (13.6)   sanguinus  1 (1.5)   mitis  1 (1.5)   agalactiae  2 (3.0)   bovis  1 (1.5)  Staphylococcus species, n (%)  20 (30.3)   aureus  14 (21.2)   lugdunensis  1 (1.5)   epidermidis  2 (3.0)   schleiferi  1 (1.5)   indifference  2 (3.0)  Intermedius Enterococcus species, n (%)  5 (7.6)   fecaelis (formerly Streptococcus fecaelis)  5 (7.6)  Fungal, n (%)  1 (1.5)   Candida albicans  1 (1.5)  Other, n (%)  1 (1.5)   Clostridium perfringens  1 (1.5)  Culture-negative endocarditis, n (%)  25 (37.8)  Surgical techniques and in-hospital treatment pathway Our EPAS techniques, which include peripheral cardiopulmonary bypass (CPB) and endoaortic balloon occlusion, are well described [11–17]. Preoperative thoracic imaging studies are not routinely performed specifically for a minimally invasive incision or thoracic access planning. We prefer endoaortic occlusion over transaortic clamping [18] and routinely perform aorta-iliac-femoral-axis angiography during preoperative coronary catheterization in stable patients and use computed tomography (CT) imaging in emergencies. Whenever possible, we identify and appropriately treat the primary source of the AVVE infection before we consider cardiac surgery. EPAS for AVVE is only considered once a comprehensive transoesophageal echocardiographic examination has excluded the involvement of non-atrioventricular valves and structures [19]. We performed AVVE surgery without delay in patients with prosthetic AVVE, congestive cardiac failure, uncontrolled sepsis, abscesses or risk for persistent systemic emboli, provided that cerebral haemorrhage was excluded by cranial CT imaging [20, 21]. We attempted to postpone surgery for 4 weeks in cases of intracranial haemorrhage and did not consider clinically silent cerebral embolism or transient ischaemic attacks as surgical contraindications [22–24]. Once CPB, cardioplegic arrest and intracardiac exposure were established, radical excision of all macroscopically infected valvular, subvalvular, annular and periannular tissue was performed using instruments with long shafts. Subsequent valve repair or replacement was determined by the quality of the remaining valvular structures. Annular patch reconstruction was performed according to routine principles [25], as was that of the valve leaflets by using either bovine or native pericardial patches according to the preference of the surgeon. The subvalvular apparatus was reattached with sutures (Gore-Tex™, Newark, DE, USA) to the free edges of the atrioventricular valves as indicated. Access to the left ventricular outflow tract was obtained by annular detachment of anterior mitral valve (MV) segments A1 to A3 in cases of outflow obstruction. The septal myomectomy was performed by sharp dissection that extended from the aortic valve to the base of the left ventricle [26]. In cases of atrial fibrillation, cryoablation was performed with an argon gas surgical ablation system (Medtronic, Minneapolis, MN, USA) and the left atrial appendage was oversewn. A patent foramen ovale was routinely closed. Previously implanted intracardiac devices (pacemakers, defibrillators, cardiac resynchronization therapy devices) were removed with all contact lesions excised at the level of the TV, the right atrium, the free wall of the right ventricle and the distal superior vena cava [27]. Temporary epicardial pacing wires were routinely placed on the left ventricular aspect. In cases of permanent pacemaker dependency, staged percutaneous or permanent epicardial electrode reimplantation was performed once patient recovery excluded residual infection. Postoperative cardiorespiratory support, sedation, analgesia and appropriate microbiology-guided antibiotic therapy were administered in the intensive care unit. Continuation of care was supervised by a specialist multidisciplinary endocarditis team for 6 weeks, either as an in-patient, or in selected cases [1], as an out-patient. Unfractionated heparin preceded the introduction of fenprocoumon (3M Health Care Ltd, St. Paul, MN, USA) until infection control was confirmed for 2 consecutive weeks, with conversion to acetylsalicylic acid after 3 months in the absence of atrial fibrillation or mechanical valve implantation. Follow-up Post-discharge continuation of care was ascertained by the referring cardiologist and family physician with a surgical review after 6 weeks. Post-discharge clinical and echocardiographic data were obtained by reviewing the latest available consultation records. Data analysis All in-hospital data were collected from a prospective database. The continuous and categorical outcomes were assessed by the incidence of adverse events (mean ± standard deviation) and the calculated intraoperative and 30-day mortality rates. Univariate- and multivariate analyses by logistic regression, which is appropriate for binary dependent variables, were used to identify independent predictors of mortality. Variables that were possibly associated with in-hospital mortality in univariate analysis were included in the multivariable logistic regression analysis to identify independent factors for in-hospital mortality. The significance level used in univariate and multivariable analyses was P-value <0.05, and all the reported P-values were 2-sided. The post-discharge data were collected retrospectively. Post-discharge survival and freedom from reoperation estimates were determined by Kaplan–Meier analysis and are expressed as a proportion ± standard error based on the intention to treat principle of the total population (n = 66). Statistical analysis was performed with the Statistica 64 software (Dell Inc., Round Rock, TX, USA). The study was approved by the institutional ethics review committee. The authors agreed to the manuscript as written and take responsibility for data integrity. RESULTS Intraoperative outcome A total of 66 consecutive patients underwent EPAS for isolated AVVE. The procedures performed, which may be more than 1 per patient, CPB and endoaortic occlusion times are outlined in Table 4. Twenty-five patients presented with isolated endocarditis in the context of previous MV repair, of which 15 (60%) underwent successful redo repair [5–7]. No intraoperative deaths were observed. Table 4: Procedures performed, cardiopulmonary bypass and endoaortic balloon occlusion times Procedures performed  n = 66  Mitral valve repair, n (%)  15 (22.7)   Ring implantation  10 (15.2)   Annular pericardial patch reconstruction  3 (4.5)   Leaflet patch reconstruction  3 (4.5)   Leaflet resection  7 (10.6)   Cleft closure  3 (4.5)   Commissuroplasty  3 (4.5)   Papillary muscle transfer  1 (1.5)   Neochordae implant  4 (6.1)  Mitral valve replacement, n (%)  45 (68.2)   Mechanical  17 (25.8)   Bioprosthetic  28 (42.4)  Tricuspid valve repair, n (%)  8 (12.1)   Ring implantation  3 (4.5)  Tricuspid valve replacement, n (%)  5 (7.6)   Mechanical  1 (1.5)   Bioprosthetic  4 (6.1)  Patent foramen ovale closure, n (%)  1 (1.5)  Cryoablation, n (%)  4 (6.1)  Left ventricular outflow tract septectomy, n (%)  1 (1.5)  Sternotomy conversions, n (%)  6 (9.1)   Lung adhesions  3 (4.5)   Cannulation problems  2 (3.0)   Aorta dissection  1 (1.5)  Intra-aortic balloon pump support, n (%)  2 (3.0)  Cardiopulmonary bypass and endoaortic balloon occlusion times (min) mean ± SD (range)   Cardiopulmonary bypass time  167 ± 49 (91–315)   Endoaortic balloon occlusion time  113 ± 33 (46–213)  Procedures performed  n = 66  Mitral valve repair, n (%)  15 (22.7)   Ring implantation  10 (15.2)   Annular pericardial patch reconstruction  3 (4.5)   Leaflet patch reconstruction  3 (4.5)   Leaflet resection  7 (10.6)   Cleft closure  3 (4.5)   Commissuroplasty  3 (4.5)   Papillary muscle transfer  1 (1.5)   Neochordae implant  4 (6.1)  Mitral valve replacement, n (%)  45 (68.2)   Mechanical  17 (25.8)   Bioprosthetic  28 (42.4)  Tricuspid valve repair, n (%)  8 (12.1)   Ring implantation  3 (4.5)  Tricuspid valve replacement, n (%)  5 (7.6)   Mechanical  1 (1.5)   Bioprosthetic  4 (6.1)  Patent foramen ovale closure, n (%)  1 (1.5)  Cryoablation, n (%)  4 (6.1)  Left ventricular outflow tract septectomy, n (%)  1 (1.5)  Sternotomy conversions, n (%)  6 (9.1)   Lung adhesions  3 (4.5)   Cannulation problems  2 (3.0)   Aorta dissection  1 (1.5)  Intra-aortic balloon pump support, n (%)  2 (3.0)  Cardiopulmonary bypass and endoaortic balloon occlusion times (min) mean ± SD (range)   Cardiopulmonary bypass time  167 ± 49 (91–315)   Endoaortic balloon occlusion time  113 ± 33 (46–213)  SD: standard deviation. Table 4: Procedures performed, cardiopulmonary bypass and endoaortic balloon occlusion times Procedures performed  n = 66  Mitral valve repair, n (%)  15 (22.7)   Ring implantation  10 (15.2)   Annular pericardial patch reconstruction  3 (4.5)   Leaflet patch reconstruction  3 (4.5)   Leaflet resection  7 (10.6)   Cleft closure  3 (4.5)   Commissuroplasty  3 (4.5)   Papillary muscle transfer  1 (1.5)   Neochordae implant  4 (6.1)  Mitral valve replacement, n (%)  45 (68.2)   Mechanical  17 (25.8)   Bioprosthetic  28 (42.4)  Tricuspid valve repair, n (%)  8 (12.1)   Ring implantation  3 (4.5)  Tricuspid valve replacement, n (%)  5 (7.6)   Mechanical  1 (1.5)   Bioprosthetic  4 (6.1)  Patent foramen ovale closure, n (%)  1 (1.5)  Cryoablation, n (%)  4 (6.1)  Left ventricular outflow tract septectomy, n (%)  1 (1.5)  Sternotomy conversions, n (%)  6 (9.1)   Lung adhesions  3 (4.5)   Cannulation problems  2 (3.0)   Aorta dissection  1 (1.5)  Intra-aortic balloon pump support, n (%)  2 (3.0)  Cardiopulmonary bypass and endoaortic balloon occlusion times (min) mean ± SD (range)   Cardiopulmonary bypass time  167 ± 49 (91–315)   Endoaortic balloon occlusion time  113 ± 33 (46–213)  Procedures performed  n = 66  Mitral valve repair, n (%)  15 (22.7)   Ring implantation  10 (15.2)   Annular pericardial patch reconstruction  3 (4.5)   Leaflet patch reconstruction  3 (4.5)   Leaflet resection  7 (10.6)   Cleft closure  3 (4.5)   Commissuroplasty  3 (4.5)   Papillary muscle transfer  1 (1.5)   Neochordae implant  4 (6.1)  Mitral valve replacement, n (%)  45 (68.2)   Mechanical  17 (25.8)   Bioprosthetic  28 (42.4)  Tricuspid valve repair, n (%)  8 (12.1)   Ring implantation  3 (4.5)  Tricuspid valve replacement, n (%)  5 (7.6)   Mechanical  1 (1.5)   Bioprosthetic  4 (6.1)  Patent foramen ovale closure, n (%)  1 (1.5)  Cryoablation, n (%)  4 (6.1)  Left ventricular outflow tract septectomy, n (%)  1 (1.5)  Sternotomy conversions, n (%)  6 (9.1)   Lung adhesions  3 (4.5)   Cannulation problems  2 (3.0)   Aorta dissection  1 (1.5)  Intra-aortic balloon pump support, n (%)  2 (3.0)  Cardiopulmonary bypass and endoaortic balloon occlusion times (min) mean ± SD (range)   Cardiopulmonary bypass time  167 ± 49 (91–315)   Endoaortic balloon occlusion time  113 ± 33 (46–213)  SD: standard deviation. Postoperative course and in-hospital outcome In-hospital deaths are outlined in Table 5. All patients who died underwent MV replacement in isolation (n = 10) or combined with TV repair (n = 2); 3 of the 10 were attempted repairs prior to replacement with ischaemic times of 78, 79 and 91 min, respectively. In-hospital complications and deaths are shown in Table 6. Postoperative low cardiac output syndrome occurred in 3 (n = 3, 4.5%) patients, all of whom were classified as critical clinical status preoperatively. Redo MV repair failure (n = 1, 1.5%) required revision and subsequent replacement through the same incision without further complications. The 30-day and in-hospital survival rates were 87.9% (n = 58) and 80.3% (n = 54), respectively. Causes of in-hospital deaths (n = 12) included low cardiac output syndrome (n = 3, 4.5%) and sepsis-related multiorgan failure (n = 9, 13.6%). The mean length of hospitalization for in-hospital survivors (n = 54) was 28.3 ± 14.1 days (range 7–72) (Fig. 1A). Age above 70 years [odds ratio (OR) 1.08, confidence interval (CI) 1.00–1.16; P = 0.04], critical preoperative status (OR 8.93, CI 1.87–42.66; P = 0.005) and EuroSCORE II (OR 1.03, CI 1.00–1.15; P = 0.049) were the only univariate predictors of deaths identified at the 5% level of significance. Combinations of age above 70 years (OR 1.66, CI 1.02–2.71; P = 0.041), critical preoperative status (OR 23.16, CI 2.57–209.02; P = 0.006) and CPB time (OR 0.97, CI 0.94–0.99; P = 0.033) were the only multivariate mortality predictors proven to be more accurate than the univariate analysis. Table 5: In-hospital deaths (n = 12) Deaths (n = 12)  Number  Percent of 12  Percent of 66  EuroSCORE II, mean ± SD (range)  33.9 ± 28.5 (2.7–82.9)     Age (years), mean ± SD (range)  73.0 ± 7.7 (59.4–85.2)     Female  7  58.3  10.6   Active endocarditis  12  100.0  18.2   Redo cardiac surgery  7  58.3  10.6   Critical preoperative status  3  25  4.5  Organism   Staphylococcus aureus  6  50.0  9.1   Streptococcus intermedius  1  8.3  1.5   Streptococcus bovis  1  8.3  1.5   Enterococcus faecalis  1  8.3  1.5   Culture negative  3  25.0  4.5  Procedure   Isolated mitral valve surgery  10  83.3  15.2   Combined mitral and tricuspid valve surgery  2  16.7  3.0  Mortality interval (days), mean ± SD (range)  19.5 ± 18.2 (1.0–59.0)       Death after 15 days postoperatively  7  58.3  10.6  Sternotomy conversion  2  16.7  3.0  Mean cardiopulmonary bypass time (min), mean ± SD (range)  145.8 ± 33.7 (98.0–209.0)    Mean endoaortic balloon occlusion time (min), mean ± SD (range)  99.7 ± 27.2 (55.0–145.0)    Univariate analysis of in-hospital deaths (n = 66)  Variables  Univariate OR (95% CI)  P-values  Age above 70 years  1.1 (1.003–1.156)  0.041  Female  2.8 (0.760–10.317)  0.120  EuroSCORE II  1.0 (1.000–1.051)  0.049  Redo cardiac surgery  1.4 (0.385–5.085)  0.604  Active endocarditis  1.5 (0.388–5.674)  0.559  Critical clinical status  8.9 (1.869–42.658)  0.007  Cardiopulmonary bypass time  1.0 (0.967–1.003)  0.144  Endoaortic balloon occlusion time  1.0 (0.957–1.006)  0.102  Sternotomy conversion  2.5 (0.388–16.113)  0.330  Valve replacement after attempted repair  3.3 (0.641–16.655)  0.151  Deaths (n = 12)  Number  Percent of 12  Percent of 66  EuroSCORE II, mean ± SD (range)  33.9 ± 28.5 (2.7–82.9)     Age (years), mean ± SD (range)  73.0 ± 7.7 (59.4–85.2)     Female  7  58.3  10.6   Active endocarditis  12  100.0  18.2   Redo cardiac surgery  7  58.3  10.6   Critical preoperative status  3  25  4.5  Organism   Staphylococcus aureus  6  50.0  9.1   Streptococcus intermedius  1  8.3  1.5   Streptococcus bovis  1  8.3  1.5   Enterococcus faecalis  1  8.3  1.5   Culture negative  3  25.0  4.5  Procedure   Isolated mitral valve surgery  10  83.3  15.2   Combined mitral and tricuspid valve surgery  2  16.7  3.0  Mortality interval (days), mean ± SD (range)  19.5 ± 18.2 (1.0–59.0)       Death after 15 days postoperatively  7  58.3  10.6  Sternotomy conversion  2  16.7  3.0  Mean cardiopulmonary bypass time (min), mean ± SD (range)  145.8 ± 33.7 (98.0–209.0)    Mean endoaortic balloon occlusion time (min), mean ± SD (range)  99.7 ± 27.2 (55.0–145.0)    Univariate analysis of in-hospital deaths (n = 66)  Variables  Univariate OR (95% CI)  P-values  Age above 70 years  1.1 (1.003–1.156)  0.041  Female  2.8 (0.760–10.317)  0.120  EuroSCORE II  1.0 (1.000–1.051)  0.049  Redo cardiac surgery  1.4 (0.385–5.085)  0.604  Active endocarditis  1.5 (0.388–5.674)  0.559  Critical clinical status  8.9 (1.869–42.658)  0.007  Cardiopulmonary bypass time  1.0 (0.967–1.003)  0.144  Endoaortic balloon occlusion time  1.0 (0.957–1.006)  0.102  Sternotomy conversion  2.5 (0.388–16.113)  0.330  Valve replacement after attempted repair  3.3 (0.641–16.655)  0.151  CI: confidence interval; OR: odds ratio; SD: standard deviation. Table 5: In-hospital deaths (n = 12) Deaths (n = 12)  Number  Percent of 12  Percent of 66  EuroSCORE II, mean ± SD (range)  33.9 ± 28.5 (2.7–82.9)     Age (years), mean ± SD (range)  73.0 ± 7.7 (59.4–85.2)     Female  7  58.3  10.6   Active endocarditis  12  100.0  18.2   Redo cardiac surgery  7  58.3  10.6   Critical preoperative status  3  25  4.5  Organism   Staphylococcus aureus  6  50.0  9.1   Streptococcus intermedius  1  8.3  1.5   Streptococcus bovis  1  8.3  1.5   Enterococcus faecalis  1  8.3  1.5   Culture negative  3  25.0  4.5  Procedure   Isolated mitral valve surgery  10  83.3  15.2   Combined mitral and tricuspid valve surgery  2  16.7  3.0  Mortality interval (days), mean ± SD (range)  19.5 ± 18.2 (1.0–59.0)       Death after 15 days postoperatively  7  58.3  10.6  Sternotomy conversion  2  16.7  3.0  Mean cardiopulmonary bypass time (min), mean ± SD (range)  145.8 ± 33.7 (98.0–209.0)    Mean endoaortic balloon occlusion time (min), mean ± SD (range)  99.7 ± 27.2 (55.0–145.0)    Univariate analysis of in-hospital deaths (n = 66)  Variables  Univariate OR (95% CI)  P-values  Age above 70 years  1.1 (1.003–1.156)  0.041  Female  2.8 (0.760–10.317)  0.120  EuroSCORE II  1.0 (1.000–1.051)  0.049  Redo cardiac surgery  1.4 (0.385–5.085)  0.604  Active endocarditis  1.5 (0.388–5.674)  0.559  Critical clinical status  8.9 (1.869–42.658)  0.007  Cardiopulmonary bypass time  1.0 (0.967–1.003)  0.144  Endoaortic balloon occlusion time  1.0 (0.957–1.006)  0.102  Sternotomy conversion  2.5 (0.388–16.113)  0.330  Valve replacement after attempted repair  3.3 (0.641–16.655)  0.151  Deaths (n = 12)  Number  Percent of 12  Percent of 66  EuroSCORE II, mean ± SD (range)  33.9 ± 28.5 (2.7–82.9)     Age (years), mean ± SD (range)  73.0 ± 7.7 (59.4–85.2)     Female  7  58.3  10.6   Active endocarditis  12  100.0  18.2   Redo cardiac surgery  7  58.3  10.6   Critical preoperative status  3  25  4.5  Organism   Staphylococcus aureus  6  50.0  9.1   Streptococcus intermedius  1  8.3  1.5   Streptococcus bovis  1  8.3  1.5   Enterococcus faecalis  1  8.3  1.5   Culture negative  3  25.0  4.5  Procedure   Isolated mitral valve surgery  10  83.3  15.2   Combined mitral and tricuspid valve surgery  2  16.7  3.0  Mortality interval (days), mean ± SD (range)  19.5 ± 18.2 (1.0–59.0)       Death after 15 days postoperatively  7  58.3  10.6  Sternotomy conversion  2  16.7  3.0  Mean cardiopulmonary bypass time (min), mean ± SD (range)  145.8 ± 33.7 (98.0–209.0)    Mean endoaortic balloon occlusion time (min), mean ± SD (range)  99.7 ± 27.2 (55.0–145.0)    Univariate analysis of in-hospital deaths (n = 66)  Variables  Univariate OR (95% CI)  P-values  Age above 70 years  1.1 (1.003–1.156)  0.041  Female  2.8 (0.760–10.317)  0.120  EuroSCORE II  1.0 (1.000–1.051)  0.049  Redo cardiac surgery  1.4 (0.385–5.085)  0.604  Active endocarditis  1.5 (0.388–5.674)  0.559  Critical clinical status  8.9 (1.869–42.658)  0.007  Cardiopulmonary bypass time  1.0 (0.967–1.003)  0.144  Endoaortic balloon occlusion time  1.0 (0.957–1.006)  0.102  Sternotomy conversion  2.5 (0.388–16.113)  0.330  Valve replacement after attempted repair  3.3 (0.641–16.655)  0.151  CI: confidence interval; OR: odds ratio; SD: standard deviation. Table 6: In-hospital morbidities (n = 66) Morbidity  n = 66  Revisions, n (%)  7 (10.6)   Residual valve dysfunction  1 (1.5)   Bleeding  6 (9.1)  Low cardiac output syndrome, n (%)  3 (4.5)  Multiorgan failure, n (%)  9 (13.6)  Stroke, n (%)  1 (1.5)  Acute renal dysfunction requiring dialysis, n (%)  6 (9.1)  Respiratory morbidity, n (%)     Residual pleural collections requiring drainage  7 (10.6)   Hospital-acquired pneumonia  8 (12.1)   Tracheostomy  5 (7.6)  Post-surgery rhythm abnormalities, n (%)  14 (21.2)   New postoperative permanent pacemaker  5 (7.6)   Implantation     New onset atrial fibrillation  9 (13.6)  Lymphocoele, n (%)  1 (1.5)  Morbidity  n = 66  Revisions, n (%)  7 (10.6)   Residual valve dysfunction  1 (1.5)   Bleeding  6 (9.1)  Low cardiac output syndrome, n (%)  3 (4.5)  Multiorgan failure, n (%)  9 (13.6)  Stroke, n (%)  1 (1.5)  Acute renal dysfunction requiring dialysis, n (%)  6 (9.1)  Respiratory morbidity, n (%)     Residual pleural collections requiring drainage  7 (10.6)   Hospital-acquired pneumonia  8 (12.1)   Tracheostomy  5 (7.6)  Post-surgery rhythm abnormalities, n (%)  14 (21.2)   New postoperative permanent pacemaker  5 (7.6)   Implantation     New onset atrial fibrillation  9 (13.6)  Lymphocoele, n (%)  1 (1.5)  Table 6: In-hospital morbidities (n = 66) Morbidity  n = 66  Revisions, n (%)  7 (10.6)   Residual valve dysfunction  1 (1.5)   Bleeding  6 (9.1)  Low cardiac output syndrome, n (%)  3 (4.5)  Multiorgan failure, n (%)  9 (13.6)  Stroke, n (%)  1 (1.5)  Acute renal dysfunction requiring dialysis, n (%)  6 (9.1)  Respiratory morbidity, n (%)     Residual pleural collections requiring drainage  7 (10.6)   Hospital-acquired pneumonia  8 (12.1)   Tracheostomy  5 (7.6)  Post-surgery rhythm abnormalities, n (%)  14 (21.2)   New postoperative permanent pacemaker  5 (7.6)   Implantation     New onset atrial fibrillation  9 (13.6)  Lymphocoele, n (%)  1 (1.5)  Morbidity  n = 66  Revisions, n (%)  7 (10.6)   Residual valve dysfunction  1 (1.5)   Bleeding  6 (9.1)  Low cardiac output syndrome, n (%)  3 (4.5)  Multiorgan failure, n (%)  9 (13.6)  Stroke, n (%)  1 (1.5)  Acute renal dysfunction requiring dialysis, n (%)  6 (9.1)  Respiratory morbidity, n (%)     Residual pleural collections requiring drainage  7 (10.6)   Hospital-acquired pneumonia  8 (12.1)   Tracheostomy  5 (7.6)  Post-surgery rhythm abnormalities, n (%)  14 (21.2)   New postoperative permanent pacemaker  5 (7.6)   Implantation     New onset atrial fibrillation  9 (13.6)  Lymphocoele, n (%)  1 (1.5)  Figure 1: View largeDownload slide (A) Length of hospital stay, (B) the Kaplan–Meier analysis for freedom from reintervention and (C) survival. Figure 1: View largeDownload slide (A) Length of hospital stay, (B) the Kaplan–Meier analysis for freedom from reintervention and (C) survival. Mid-term survival, freedom from reoperation, clinical and echocardiographic follow-up A total of 3167.7 patient months (mean 63.2 ± 42.5, median 46.5) were available for analysis of recent mid-term survival, freedom from atrioventricular valve reintervention and clinical status analysis. Up-to-date clinical and echocardiographic data of post-discharge patients (n = 50, 93.9% complete at 12 months) are outlined in Table 7. Incomplete follow-up data of 4 international patients (6.1%) were not incorporated into the mid-term outcome results. Thirty-eight of the subsequent 50 post-discharge patients analysed (76.0%) had follow-up periods longer than 3 years. Six patients died late postoperatively of hepatic carcinoma (63.8 months), stroke (73.5 months), sarcoma (97.3 months), post-transplantation issues (12.5 months), cardiac failure (4.6 months) and unknown cause (23.5 months), respectively. AVVE recurrence was observed in 3 (6.0%) patients, 1 (2.0%) of whom required surgical reintervention 102.4 months postoperatively. The Kaplan–Meier analysis for post-discharge freedom from AVVE reintervention at 10 years was 98.4% (Fig. 1B). The Kaplan–Meier analyses for survival (Fig. 1C) at 5 and 10 years were 72.6% and 69.4%, respectively. New York Heart Association (NYHA) Class I or II status was observed in 47 (94.0%) of the 50 mid-term survivors, with residual MV regurgitation less than Grade I confirmed in all patients (n = 50, 100%). Table 7: Post-discharge clinical and echocardiographic outcomes of late survivors Clinical outcomes (63.2 ± 42.5 months)a  n = 50  NYHA functional class status, n (%)   I  37 (74.0)   II  10 (20.0)   III  3 (6.0)  Late cardiovascular events, n (%)   Stroke/transient ischaemic attack  2 (4.0)   Recurrent endocarditis  3 (6.0)   New onset atrial fibrillation  11 (22.0)   Other cardiac surgery  1 (2.0)   Peripheral vascular intervention  2 (4.0)  Echocardiographic outcomes (56.3 ± 40.8 months)  Mitral valve function   Regurgitation less than Grade I, n (%)  50 (100.0)   Gradient (mmHg), mean ± SD  2.7 ± 2.7 (2.0)   Paravalvular leak, n (%)  1 (2.0)   Systolic anterior motion, n (%)  1 (100.0)  Tricuspid valve function   Regurgitation less than Grade II  50  Mean left ventricular ejection fraction (%), mean ± SD  57.8 ± 10.8  Kaplan–Meier analysis for survival and freedom from reintervention (n = 62)b  Years  Survival (%)  Freedom from reintervention (%)  1  77.4  100.0  3  75.8  100.0  5  72.6  98.4  7  71.0  98.4  10  69.4  98.4  Clinical outcomes (63.2 ± 42.5 months)a  n = 50  NYHA functional class status, n (%)   I  37 (74.0)   II  10 (20.0)   III  3 (6.0)  Late cardiovascular events, n (%)   Stroke/transient ischaemic attack  2 (4.0)   Recurrent endocarditis  3 (6.0)   New onset atrial fibrillation  11 (22.0)   Other cardiac surgery  1 (2.0)   Peripheral vascular intervention  2 (4.0)  Echocardiographic outcomes (56.3 ± 40.8 months)  Mitral valve function   Regurgitation less than Grade I, n (%)  50 (100.0)   Gradient (mmHg), mean ± SD  2.7 ± 2.7 (2.0)   Paravalvular leak, n (%)  1 (2.0)   Systolic anterior motion, n (%)  1 (100.0)  Tricuspid valve function   Regurgitation less than Grade II  50  Mean left ventricular ejection fraction (%), mean ± SD  57.8 ± 10.8  Kaplan–Meier analysis for survival and freedom from reintervention (n = 62)b  Years  Survival (%)  Freedom from reintervention (%)  1  77.4  100.0  3  75.8  100.0  5  72.6  98.4  7  71.0  98.4  10  69.4  98.4  a 93.9% complete. b Excluding those lost to international follow-up (n = 4, 6.1%). NYHA: New York Heart Association; SD: standard deviation. Table 7: Post-discharge clinical and echocardiographic outcomes of late survivors Clinical outcomes (63.2 ± 42.5 months)a  n = 50  NYHA functional class status, n (%)   I  37 (74.0)   II  10 (20.0)   III  3 (6.0)  Late cardiovascular events, n (%)   Stroke/transient ischaemic attack  2 (4.0)   Recurrent endocarditis  3 (6.0)   New onset atrial fibrillation  11 (22.0)   Other cardiac surgery  1 (2.0)   Peripheral vascular intervention  2 (4.0)  Echocardiographic outcomes (56.3 ± 40.8 months)  Mitral valve function   Regurgitation less than Grade I, n (%)  50 (100.0)   Gradient (mmHg), mean ± SD  2.7 ± 2.7 (2.0)   Paravalvular leak, n (%)  1 (2.0)   Systolic anterior motion, n (%)  1 (100.0)  Tricuspid valve function   Regurgitation less than Grade II  50  Mean left ventricular ejection fraction (%), mean ± SD  57.8 ± 10.8  Kaplan–Meier analysis for survival and freedom from reintervention (n = 62)b  Years  Survival (%)  Freedom from reintervention (%)  1  77.4  100.0  3  75.8  100.0  5  72.6  98.4  7  71.0  98.4  10  69.4  98.4  Clinical outcomes (63.2 ± 42.5 months)a  n = 50  NYHA functional class status, n (%)   I  37 (74.0)   II  10 (20.0)   III  3 (6.0)  Late cardiovascular events, n (%)   Stroke/transient ischaemic attack  2 (4.0)   Recurrent endocarditis  3 (6.0)   New onset atrial fibrillation  11 (22.0)   Other cardiac surgery  1 (2.0)   Peripheral vascular intervention  2 (4.0)  Echocardiographic outcomes (56.3 ± 40.8 months)  Mitral valve function   Regurgitation less than Grade I, n (%)  50 (100.0)   Gradient (mmHg), mean ± SD  2.7 ± 2.7 (2.0)   Paravalvular leak, n (%)  1 (2.0)   Systolic anterior motion, n (%)  1 (100.0)  Tricuspid valve function   Regurgitation less than Grade II  50  Mean left ventricular ejection fraction (%), mean ± SD  57.8 ± 10.8  Kaplan–Meier analysis for survival and freedom from reintervention (n = 62)b  Years  Survival (%)  Freedom from reintervention (%)  1  77.4  100.0  3  75.8  100.0  5  72.6  98.4  7  71.0  98.4  10  69.4  98.4  a 93.9% complete. b Excluding those lost to international follow-up (n = 4, 6.1%). NYHA: New York Heart Association; SD: standard deviation. DISCUSSION The role of minimally invasive surgery for acute or convalescent AVVE is not defined. We established endoscopic atrioventricular valve surgery by port access (EPAS) as our routine approach for all cases of isolated mitral and TV disease since February 1997 and investigated the clinical and echocardiographic outcomes of 66 consecutive patients with isolated AVVE. The incidence of acute AVVE (n = 41, 61.1%), septic/pending septic shock (n = 9, 13.6%), congestive cardiac failure presentation (n = 58, 78.8%) and microbiological profile in our series correlates well with the patient characteristics described in contemporary reports [3–10]. The empirical administration of antibiotics by referring physicians and the cost-related limitation of antinuclear antibody and antiporcine bioprosthesis allergic assays may contribute to a higher incidence of blood culture-negative endocarditis (n = 25, 37.9%) in our series [28]. A variety of simple and complex EPAS infection control and valve reconstruction procedures were performed without compromising the well-defined principles of infective endocarditis surgery [4]. EPAS provides direct and focused access to the target valves, with CPB and endoaortic inflation times comparable with those in contemporary sternotomy approach reports [5]. The survival benefit of valve repair is well described [6, 7], and we elected to attempt redo repair as the first-line therapy in a redo setting. We considered valve replacement only if the post-debridement morphology prohibited a durable repair outcome. Homografts were not utilized in our series. One new neurological event (1.5%), which was not EPAS-AVVE related, occurred on the 10th postoperative day in a critically ill patient secondary to MV mechanical prosthesis thrombosis. The patient was eventually discharged home after 72 days in the hospital. All revisions (n = 7, 10.1%) were performed through the same incisions without residual bleeding, difficulty in achieving haemostasis or valve-related complications. Postoperative dialysis was required in 6 (9.1%) patients, 5 (7.6%) of whom were on dialysis preoperatively. The observed 30-day mortality rate, within the context of a mean EuroSCORE II of 31.2 ± 24.9% and which includes operative mortality (n = 8, 12.1%), compares well with those from contemporary AVVE series [4–10]. In-hospital survival was 80.3% (n = 54). In addition to the well-described independent risk factors for death [4–7, 22, 29, 30], which include prosthetic AVVE, staphylococcal AVVE, septic shock, congestive heart failure, stroke and intracardiac abscess, univariate and multivariate logistical regression analysis identified age, EuroSCORE II and critical preoperative clinical status as significant additional contributors to in-hospital deaths in our series. Clinical and echocardiographic follow-up of post-discharge survivors (n = 50, 93.9% complete) confirmed favourable outcomes comparable with those from current sternotomy access reports [4–10, 22]. No post-discharge deaths were related to AVVE or EPAS. The rates of survival and freedom from reintervention at 10 years were 69.4% and 98.4%, respectively. Recurrent AVVE occurred in 3 surviving patients (6.0%), one of whom required reoperation (102.4 months) for unsuccessfully medical therapy. Despite EPAS-AVVE being the routine approach at our institution, we caution against undertaking EPAS-AVVE during the initial learning curve of minimally invasive atrioventricular valve surgery and encourage experienced centres to offer patients the potential benefits of a minimally invasive approach. Limitations This series reflects the outcomes of the current surgical team of a single centre with extensive EPAS experience. The enrolment period of this study was 11.2 years, and its impact on our conclusions was not subjected to sensitivity analyses. The use of sternotomy access has been abandoned since the introduction of our minimally invasive port access surgery program, which is routine for isolated atrioventricular valve disease at our institution. All patients were offered minimally invasive port access surgery with the intention to the treat, which resulted in the absence of a control group or propensity matching. The EuroSCORE II, which is standardized for sternotomy access, was used as the control for operative outcomes. CONCLUSION Complex atrioventricular valve surgery in the context of AVVE can be performed endoscopically in experienced centres with favourable perioperative survival and mid-term clinical and echocardiographic outcomes. The presence of isolated AVVE should not deter experienced surgeons from offering patients the full range of potential benefits associated with minimally invasive cardiac surgery. ACKNOWLEDGEMENTS The authors wish to thank Garth Zietsman for his statistical analysis and contribution to this manuscript. Conflict of interest: Frank Van Praet and Filip Casselman serve on the Edwards Lifesciences Medical Advisory Board for minimally invasive cardiac surgery. REFERENCES 1 Habib G, Lancellotti P, Antunes MJ, Bongiorni MG, Casalta JP, Del Zotti F et al.   2015 ESC Guidelines for the management of infective endocarditis: the Task Force for the Management of Infective Endocarditis of the European Society of Cardiology (ESC). Endorsed by: European Association for Cardio-Thoracic Surgery (EACTS), the European Association of Nuclear Medicine (EANM). Eur Heart J  2015; 36: 3075– 128. Google Scholar CrossRef Search ADS PubMed  2 Baddour LM, Wilson WR, Bayer AS, Fowler VGJr, Bolger AF, Levison ME et al.   Infective endocarditis: diagnosis, antimicrobial therapy, and management of complications a statement for healthcare professionals from the Committee on Rheumatic Fever, Endocarditis, and Kawasaki Disease, Council on Cardiovascular Disease in the Young, and the Councils on Clinical Cardiology, Stroke, and Cardiovascular Surgery and Anesthesia, American Heart Association: endorsed by the Infectious Diseases Society of America. Circulation  2005; 111: e394– 434. Google Scholar CrossRef Search ADS PubMed  3 Thuny F, Grisoli D, Collart F, Habib G, Raoult D. Management of infective endocarditis: challenges and perspectives. Lancet  2012; 379: 965– 75. Google Scholar CrossRef Search ADS PubMed  4 David TE, Gavra G, Feindel CM, Regesta T, Armstrong S, Maganti MD. Surgical treatment of active infective endocarditis: a continued challenge. J Thorac Cardiovasc Surg  2007; 133: 144– 9. Google Scholar CrossRef Search ADS PubMed  5 de Kerchove L, Vanoverschelde JL, Poncelet A, Glineur D, Rubay J, Zech F et al.   Reconstructive surgery in active mitral valve endocarditis: feasibility, safety and durability. Eur J Cardiothorac Surg  2007; 31: 592– 9. Google Scholar CrossRef Search ADS PubMed  6 de Kerchove L, Price J, Tamer S, Glineur D, Momeni M, Noirhomme P et al.   Extending the scope of mitral valve repair in active endocarditis. J Thorac Cardiovasc Surg  2012; 143: S91– 5. Google Scholar CrossRef Search ADS PubMed  7 Shang E, Forrest GN, Chizmar T, Chim J, Brown JM, Zhan M et al.   Mitral valve infective endocarditis: benefit of early operation and aggressive use of repair. Ann Thorac Surg  2009; 87: 1728– 33. Google Scholar CrossRef Search ADS PubMed  8 Wallace AG, Young WG, Osterhout S. Treatment of acute bacterial endocarditis by valve excision and replacement. Circulation  1965; 31: 450– 3. Google Scholar CrossRef Search ADS PubMed  9 Pant S, Patel NJ, Deshmukh A, Golwala H, Patel N, Badheka A et al.   Trends in infective endocarditis incidence, microbiology, and valve replacement in the United States from 2000 to 2011. J Am Coll Cardiol  2015; 65: 2070– 6. Google Scholar CrossRef Search ADS PubMed  10 Thuny F, Giorgi R, Habachi R, Ansaldi S, Le Dolley Y, Casalta JP et al.   Excess mortality and morbidity in patients surviving infective endocarditis. Am Heart J  2012; 164: 94– 101. Google Scholar CrossRef Search ADS PubMed  11 Casselman FP, Van Slycke S, Dom H, Lambrechts DL, Vermeulen Y, Vanermen H. Endoscopic mitral valve repair: feasible, reproducible, and durable. J Thorac Cardiovasc Surg  2003; 125: 273– 82. Google Scholar CrossRef Search ADS PubMed  12 Casselman FP, La Meir M, Jeanmart H, Mazzarro E, Coddens J, Van Praet F et al.   Endoscopic mitral and tricuspid valve surgery after previous cardiac surgery. Circulation  2007; 116: I270– 5. Google Scholar CrossRef Search ADS PubMed  13 van der Merwe J, Casselman F, Stockman B, Vermeulen Y, Degrieck I, Van Praet F. Late redo-port access surgery after port access surgery. Interact CardioVasc Thorac Surg  2016; 22: 13– 8. Google Scholar CrossRef Search ADS PubMed  14 van der Merwe J, Casselman F, Stockman B, Vermeulen Y, Degrieck I, Van Praet F. Endoscopic atrioventricular valve surgery in adults with difficult-to-access uncorrected congenital chest wall deformities. Interact CardioVasc Thorac Surg  2016; 23: 851– 5. Google Scholar CrossRef Search ADS PubMed  15 van der Merwe J, Beelen R, Martens S, Van Praet F. Single-stage minimally invasive surgery for synchronous primary pulmonary adenocarcinoma and left atrial myxoma. Ann Thorac Surg  2015; 100: 2352– 4. Google Scholar CrossRef Search ADS PubMed  16 van der Merwe J, Casselman F, Stockman B, Vermeulen Y, Degrieck I, Van Praet F. Endoscopic port access surgery for late orthotopic cardiac transplantation atrioventricular valve disease. J Heart Valve Dis  2017; 26: 124– 9. Google Scholar PubMed  17 van der Merwe J, Casselman F, Beelen R, Van Praet F. Total percutaneous cardiopulmonary bypass for robotic and endoscopic atrioventricular valve surgery. Innovations  2017; 12: 296– 9. Google Scholar PubMed  18 Habib G, Badano L, Tribouilloy C, Vilacosta I, Zamorano JL, Galderisi M et al.   Recommendations for the practice of echocardiography in infective endocarditis. Eur J Echocardiogr  2010; 11: 202– 19. Google Scholar CrossRef Search ADS PubMed  19 Casselman F, Aramendi J, Bentala M, Candolfi P, Coppoolse R, Gersak B et al.   Endoaortic clamping does not increase the risk of stroke in minimal access mitral valve surgery: a multicenter experience. Ann Thorac Surg  2015; 100: 1334– 9. Google Scholar CrossRef Search ADS PubMed  20 Hill EE, Herijgers P, Claus P, Vanderschueren S, Peetermans WE, Herregods MC. Abscess in infective endocarditis: the value of transesophageal echocardiography and outcome: a 5-year study. Am Heart J  2007; 154: 923– 8. Google Scholar CrossRef Search ADS PubMed  21 Barsic B, Dickerman S, Krajinovic V, Pappas P, Altclas J, Carosi G et al.   Influence of the timing of cardiac surgery on the outcome of patients with infective endocarditis and stroke. Clin Infect Dis  2013; 56: 209– 17. Google Scholar CrossRef Search ADS PubMed  22 Prendergast BD, Tornos P. Surgery for infective endocarditis: who and when? Circulation  2010; 121: 1141– 52. Google Scholar CrossRef Search ADS PubMed  23 Okazaki S, Yoshioka D, Sakaguchi M, Sawa Y, Mochizuki H, Kitagawa K. Acute ischemic brain lesions in infective endocarditis: incidence, related factors, and postoperative outcome. Cerebrovasc Dis  2013; 35: 155– 62. Google Scholar CrossRef Search ADS PubMed  24 Garcia-Cabrera E, Fernandez-Hidalgo N, Almirante B, Ivanova-Georgieva R, Noureddine M, Plata A et al.   Neurological complications of infective endocarditis: risk factors, outcome, and impact of cardiac surgery: a multicenter observational study. Circulation  2013; 127: 2272– 84. Google Scholar CrossRef Search ADS PubMed  25 David TE, Feindel CM, Armstrong S, Sun Z. Reconstruction of the mitral annulus: a ten-year experience. J Thorac Cardiovasc Surg  1995; 110: 1323. Google Scholar CrossRef Search ADS PubMed  26 Casselman F, Vanermen H. Idiopathic hypertrophic subaortic stenosis can be treated endoscopically. J Thorac Cardiovasc Surg  2002; 124: 1248– 9. Google Scholar CrossRef Search ADS PubMed  27 Baddour LM, Epstein AE, Erickson CC, Knight BP, Levison ME, Lockhart PB et al.   Update on cardiovascular implantable electronic device infections and their management: a scientific statement from the American Heart Association. Circulation  2010; 121: 458– 77. Google Scholar CrossRef Search ADS PubMed  28 Tattevin P, Watt G, Revest M, Arvieux C, Fournier PE. Update on blood culture-negative endocarditis. Med Mal Infect  2015; 45: 1– 8. Google Scholar CrossRef Search ADS PubMed  29 Aksoy O, Sexton DJ, Wang A, Pappas PA, Kourany W, Chu V et al.   Early surgery in patients with infective endocarditis: a propensity score analysis. Clin Infect Dis  2007; 44: 364– 72. Google Scholar CrossRef Search ADS PubMed  30 Revilla A, López J, Vilacosta I, Villacorta E, Rollán MJ, Echevarría JR et al.   Clinical and prognostic profile of patients with infective endocarditis who need urgent surgery. Eur Heart J  2007; 28: 65– 71. Google Scholar CrossRef Search ADS PubMed  © The Author(s) 2018. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved. This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/about_us/legal/notices)

Journal

Interactive CardioVascular and Thoracic SurgeryOxford University Press

Published: Apr 2, 2018

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off