Effects of prenatal exposure to ambient air pollutant PM10 on ultrasound-measured fetal growth

Effects of prenatal exposure to ambient air pollutant PM10 on ultrasound-measured fetal growth AbstractBackgroundLimited epidemiological studies have investigated the relationship between prenatal exposure to ambient particulate matter and risk of abnormal fetal growth, and have reached inconclusive results. No study has been conducted in areas with very high air pollution levels. We investigated the hypothesis that exposure to high levels of particulate matter with aerodynamic diameter no larger than 10 µm (PM10) during pregnancy increases the risk of abnormal fetal growth.MethodsA birth cohort study was performed in Lanzhou, China, 2010–12, including 8877 pregnant women with 18 583 ultrasound measurements of four fetal growth parameters during pregnancy, including biparietal diameter (BPD), femur length (FL), head circumference (HC) and abdominal circumference (AC). Mixed-effects modelling was used to examine the associations between PM10 exposure and risk of abnormal fetal growth.ResultsWhen average PM10 exposure from conception until the ultrasound examination exceeded 150 µg/m3, there were significant increases in standardized FL (β = 0.095, P = 0.0012) and HC (β = 0.090, P = 0.0078) measures. When average PM10 exposure was treated as continuous variable, we found a significant decrease in standardized BPD (β = −0.018, P = 0.0016) as per 10 µg/m3 increase in PM10. After examining the associations by various exposure windows, positive associations between higher levels of PM10 and fetal overgrowth were consistently seen for HC measures.ConclusionsOur study suggested that prenatal exposure to high levels of ambient PM10 increased the risk of abnormal fetal growth. The findings from our study have important public health implications and also call for future studies to explore the underlying mechanisms and post-natal consequences of these findings. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal of Epidemiology Oxford University Press

Effects of prenatal exposure to ambient air pollutant PM10 on ultrasound-measured fetal growth

Loading next page...
 
/lp/ou_press/effects-of-prenatal-exposure-to-ambient-air-pollutant-pm10-on-iS0NLMb30D
Publisher
Oxford University Press
Copyright
© The Author(s) 2018; all rights reserved. Published by Oxford University Press on behalf of the International Epidemiological Association
ISSN
0300-5771
eISSN
1464-3685
D.O.I.
10.1093/ije/dyy019
Publisher site
See Article on Publisher Site

Abstract

AbstractBackgroundLimited epidemiological studies have investigated the relationship between prenatal exposure to ambient particulate matter and risk of abnormal fetal growth, and have reached inconclusive results. No study has been conducted in areas with very high air pollution levels. We investigated the hypothesis that exposure to high levels of particulate matter with aerodynamic diameter no larger than 10 µm (PM10) during pregnancy increases the risk of abnormal fetal growth.MethodsA birth cohort study was performed in Lanzhou, China, 2010–12, including 8877 pregnant women with 18 583 ultrasound measurements of four fetal growth parameters during pregnancy, including biparietal diameter (BPD), femur length (FL), head circumference (HC) and abdominal circumference (AC). Mixed-effects modelling was used to examine the associations between PM10 exposure and risk of abnormal fetal growth.ResultsWhen average PM10 exposure from conception until the ultrasound examination exceeded 150 µg/m3, there were significant increases in standardized FL (β = 0.095, P = 0.0012) and HC (β = 0.090, P = 0.0078) measures. When average PM10 exposure was treated as continuous variable, we found a significant decrease in standardized BPD (β = −0.018, P = 0.0016) as per 10 µg/m3 increase in PM10. After examining the associations by various exposure windows, positive associations between higher levels of PM10 and fetal overgrowth were consistently seen for HC measures.ConclusionsOur study suggested that prenatal exposure to high levels of ambient PM10 increased the risk of abnormal fetal growth. The findings from our study have important public health implications and also call for future studies to explore the underlying mechanisms and post-natal consequences of these findings.

Journal

International Journal of EpidemiologyOxford University Press

Published: Aug 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off