Effects of Epidermal Growth Factor and Dibutyryl Cyclic Adenosine Monophosphate on the Migration Pattern of Astrocytes Grafted into Adult Rat Brain

Effects of Epidermal Growth Factor and Dibutyryl Cyclic Adenosine Monophosphate on the Migration... AbstractOBJECTIVENeonatal rat astrocytes transplanted into host brains migrate in specific patterns, which are determined by the developmental stage of the host brain and the region of implantation. We hypothesized that the differentiation state of the implanted astrocytes could also affect astrocyte migration.METHODSAstrocytes derived from neonatal rats (1-4 d) were placed in culture and exposed to growth- or differentiation-promoting agents (e.g., epidermal growth factor or dibutyryl cyclic adenosine monophosphate). Treated cells were then injected into different regions of the adult rat brain. At 3, 6, and 9 days after implantation, the extent and pattern of astrocyte migration after injection into the cortex, hippocampus, and corpus callosum were assessed.RESULTSAstrocytes pretreated with either factor did not migrate during the first 3 days after implantation into the host cortex and hippocampus, whereas untreated cells migrated extensively by Day 3. After 9 days, implanted cells that had been pretreated with dibutyryl cyclic adenosine monophosphate began to demonstrate migratory activity, whereas those exposed to epidermal growth factor remained at the site of implantation. These findings corresponded to the effects of these agents in culture. On the other hand, cells implanted into the corpus callosum migrated in spite of pretreatment.CONCLUSIONEpidermal growth factor and dibutyryl cyclic adenosine monophosphate each altered the cells in culture such that they were inhibited from migrating after transplantation into the host cortex and hippocampus. This finding suggests that the activation of either growth or differentiation cascades partially inhibits the migratory ability in these cells either through effects on their internal migratory potentials or their responsiveness to external migratory signals. In contrast, cells implanted into the corpus callosum migrated in spite of pretreatment, suggesting that this structure may present migratory cues sufficient to override the effects of treatment. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Neurosurgery Oxford University Press

Effects of Epidermal Growth Factor and Dibutyryl Cyclic Adenosine Monophosphate on the Migration Pattern of Astrocytes Grafted into Adult Rat Brain

Effects of Epidermal Growth Factor and Dibutyryl Cyclic Adenosine Monophosphate on the Migration Pattern of Astrocytes Grafted into Adult Rat Brain

Effects of Epidermal Growth Factor and Dibutyryl Cyclic Adenosine Monophosphate on the Migration Pattern of Astrocytes Grafted into Adult Rat Brain J a y n e C h u , M . D . , J a m e s D . H a t t o n , P h . D . , H o i S a n g U , M . D . D ivision of Neurosurgery, University of California at San Diego, La Jolla, and Veterans Adm inistration Medical Center, San Diego, California OBJECTIVE: Neonatal rat astrocytes transplanted into host brains migrate in specific patterns, which are determined by the developmental stage of the host brain and the region of implantation. W e hypothesized that the differentiation state of the implanted astrocytes could also affect astrocyte migration. METHODS: Astrocytes derived from neonatal rats (1-4 d) were placed in culture and exposed to growth- or differentiation-promoting agents (e.g., epidermal growth factor or dibutyryl cyclic adenosine monophosphate). Treated cells were then injected into different regions of the adult rat brain. At 3, 6, and 9 days after implantation, the extent and pattern of astrocyte migration after injection into the cortex, hippocampus, and corpus callosum were assessed. RESULTS: Astrocytes pretreated with either factor did not migrate during the first 3 days after implantation into the host cortex and hippocampus, whereas untreated cells migrated extensively by Day 3. After 9 days, implanted cells that had been pretreated with dibutyryl cyclic adenosine monophosphate began to demonstrate migratory activity, whereas those exposed to epidermal growth factor remained at the site of implantation. These findings corresponded to the effects of these agents in culture. On the other hand, cells implanted into the corpus callosum migrated in spite of pretreatment. CONCLUSION: Epidermal growth factor and dibutyryl cyclic adenosine monophosphate each altered the cells in culture such that they were inhibited from migrating after transplantation into the host cortex and hippocampus. This finding suggests that...
Loading next page...
 
/lp/ou_press/effects-of-epidermal-growth-factor-and-dibutyryl-cyclic-adenosine-Zpmy0xQF4R
Publisher
Congress of Neurological Surgeons
Copyright
© Published by Oxford University Press.
ISSN
0148-396X
eISSN
1524-4040
D.O.I.
10.1097/00006123-199910000-00026
Publisher site
See Article on Publisher Site

Abstract

AbstractOBJECTIVENeonatal rat astrocytes transplanted into host brains migrate in specific patterns, which are determined by the developmental stage of the host brain and the region of implantation. We hypothesized that the differentiation state of the implanted astrocytes could also affect astrocyte migration.METHODSAstrocytes derived from neonatal rats (1-4 d) were placed in culture and exposed to growth- or differentiation-promoting agents (e.g., epidermal growth factor or dibutyryl cyclic adenosine monophosphate). Treated cells were then injected into different regions of the adult rat brain. At 3, 6, and 9 days after implantation, the extent and pattern of astrocyte migration after injection into the cortex, hippocampus, and corpus callosum were assessed.RESULTSAstrocytes pretreated with either factor did not migrate during the first 3 days after implantation into the host cortex and hippocampus, whereas untreated cells migrated extensively by Day 3. After 9 days, implanted cells that had been pretreated with dibutyryl cyclic adenosine monophosphate began to demonstrate migratory activity, whereas those exposed to epidermal growth factor remained at the site of implantation. These findings corresponded to the effects of these agents in culture. On the other hand, cells implanted into the corpus callosum migrated in spite of pretreatment.CONCLUSIONEpidermal growth factor and dibutyryl cyclic adenosine monophosphate each altered the cells in culture such that they were inhibited from migrating after transplantation into the host cortex and hippocampus. This finding suggests that the activation of either growth or differentiation cascades partially inhibits the migratory ability in these cells either through effects on their internal migratory potentials or their responsiveness to external migratory signals. In contrast, cells implanted into the corpus callosum migrated in spite of pretreatment, suggesting that this structure may present migratory cues sufficient to override the effects of treatment.

Journal

NeurosurgeryOxford University Press

Published: Oct 1, 1999

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off