Effects of Epidermal Growth Factor and Dibutyryl Cyclic Adenosine Monophosphate on the Migration Pattern of Astrocytes Grafted into Adult Rat Brain

Effects of Epidermal Growth Factor and Dibutyryl Cyclic Adenosine Monophosphate on the Migration... AbstractOBJECTIVENeonatal rat astrocytes transplanted into host brains migrate in specific patterns, which are determined by the developmental stage of the host brain and the region of implantation. We hypothesized that the differentiation state of the implanted astrocytes could also affect astrocyte migration.METHODSAstrocytes derived from neonatal rats (1-4 d) were placed in culture and exposed to growth- or differentiation-promoting agents (e.g., epidermal growth factor or dibutyryl cyclic adenosine monophosphate). Treated cells were then injected into different regions of the adult rat brain. At 3, 6, and 9 days after implantation, the extent and pattern of astrocyte migration after injection into the cortex, hippocampus, and corpus callosum were assessed.RESULTSAstrocytes pretreated with either factor did not migrate during the first 3 days after implantation into the host cortex and hippocampus, whereas untreated cells migrated extensively by Day 3. After 9 days, implanted cells that had been pretreated with dibutyryl cyclic adenosine monophosphate began to demonstrate migratory activity, whereas those exposed to epidermal growth factor remained at the site of implantation. These findings corresponded to the effects of these agents in culture. On the other hand, cells implanted into the corpus callosum migrated in spite of pretreatment.CONCLUSIONEpidermal growth factor and dibutyryl cyclic adenosine monophosphate each altered the cells in culture such that they were inhibited from migrating after transplantation into the host cortex and hippocampus. This finding suggests that the activation of either growth or differentiation cascades partially inhibits the migratory ability in these cells either through effects on their internal migratory potentials or their responsiveness to external migratory signals. In contrast, cells implanted into the corpus callosum migrated in spite of pretreatment, suggesting that this structure may present migratory cues sufficient to override the effects of treatment. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Neurosurgery Oxford University Press

Effects of Epidermal Growth Factor and Dibutyryl Cyclic Adenosine Monophosphate on the Migration Pattern of Astrocytes Grafted into Adult Rat Brain

Effects of Epidermal Growth Factor and Dibutyryl Cyclic Adenosine Monophosphate on the Migration Pattern of Astrocytes Grafted into Adult Rat Brain

Effects of Epidermal Growth Factor and Dibutyryl Cyclic Adenosine Monophosphate on the Migration Pattern of Astrocytes Grafted into Adult Rat Brain J a y n e C h u , M . D . , J a m e s D . H a t t o n , P h . D . , H o i S a n g U , M . D . D ivision of Neurosurgery, University of California at San Diego, La Jolla, and Veterans Adm inistration Medical Center, San Diego, California OBJECTIVE: Neonatal rat astrocytes transplanted into host brains migrate in specific patterns, which are determined by the developmental stage of the host brain and the region of implantation. W e hypothesized that the differentiation state of the implanted astrocytes could also affect astrocyte migration. METHODS: Astrocytes derived from neonatal rats (1-4 d) were placed in culture and exposed to growth- or differentiation-promoting agents (e.g., epidermal growth factor or dibutyryl cyclic adenosine monophosphate). Treated cells were then injected into different regions of the adult rat brain. At 3, 6, and 9 days after implantation, the extent and pattern of astrocyte migration after injection into the cortex, hippocampus, and corpus callosum were assessed. RESULTS: Astrocytes pretreated with either factor did not migrate during the first 3 days after implantation into the host cortex and hippocampus, whereas untreated cells migrated extensively by Day 3. After 9 days, implanted cells that had been pretreated with dibutyryl cyclic adenosine monophosphate began to demonstrate migratory activity, whereas those exposed to epidermal growth factor remained at the site of implantation. These findings corresponded to the effects of these agents in culture. On the other hand, cells implanted into the corpus callosum migrated in spite of pretreatment. CONCLUSION: Epidermal growth factor and dibutyryl cyclic adenosine monophosphate each altered the cells in culture such that they were inhibited from migrating after transplantation into the host cortex and hippocampus. This finding suggests that...
Loading next page...
 
/lp/ou_press/effects-of-epidermal-growth-factor-and-dibutyryl-cyclic-adenosine-Zpmy0xQF4R
Publisher
Congress of Neurological Surgeons
Copyright
© Published by Oxford University Press.
ISSN
0148-396X
eISSN
1524-4040
D.O.I.
10.1097/00006123-199910000-00026
Publisher site
See Article on Publisher Site

Abstract

AbstractOBJECTIVENeonatal rat astrocytes transplanted into host brains migrate in specific patterns, which are determined by the developmental stage of the host brain and the region of implantation. We hypothesized that the differentiation state of the implanted astrocytes could also affect astrocyte migration.METHODSAstrocytes derived from neonatal rats (1-4 d) were placed in culture and exposed to growth- or differentiation-promoting agents (e.g., epidermal growth factor or dibutyryl cyclic adenosine monophosphate). Treated cells were then injected into different regions of the adult rat brain. At 3, 6, and 9 days after implantation, the extent and pattern of astrocyte migration after injection into the cortex, hippocampus, and corpus callosum were assessed.RESULTSAstrocytes pretreated with either factor did not migrate during the first 3 days after implantation into the host cortex and hippocampus, whereas untreated cells migrated extensively by Day 3. After 9 days, implanted cells that had been pretreated with dibutyryl cyclic adenosine monophosphate began to demonstrate migratory activity, whereas those exposed to epidermal growth factor remained at the site of implantation. These findings corresponded to the effects of these agents in culture. On the other hand, cells implanted into the corpus callosum migrated in spite of pretreatment.CONCLUSIONEpidermal growth factor and dibutyryl cyclic adenosine monophosphate each altered the cells in culture such that they were inhibited from migrating after transplantation into the host cortex and hippocampus. This finding suggests that the activation of either growth or differentiation cascades partially inhibits the migratory ability in these cells either through effects on their internal migratory potentials or their responsiveness to external migratory signals. In contrast, cells implanted into the corpus callosum migrated in spite of pretreatment, suggesting that this structure may present migratory cues sufficient to override the effects of treatment.

Journal

NeurosurgeryOxford University Press

Published: Oct 1, 1999

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off