Craniocerebral Trauma: Protection and Retrieval of the Neuronal Population after Injury

Craniocerebral Trauma: Protection and Retrieval of the Neuronal Population after Injury AbstractOBJECTIVE:To review the consequences of mechanical injury to the brain with an emphasis on factors that may explain the variability of outcomes and how this might be influenced.METHODS:Information regarding the pathophysiology of traumatic brain damage contained in original scientific reports and in review articles published in recent years was reviewed from the perspective of a clinical neurosurgeon and a neuropathologist, each with major research interests in traumatic brain damage. The information was compiled on the basis of the knowledge of and personal selection of articles that were identified through selective literature searches and current awareness profiles. A systematic literature review was not conducted.RESULTS:Mechanical input affects neuronal and vascular elements and is translated into biological effects on the brain through a complex series of interacting cellular and molecular events. Whether these lead to permanent structural damage or to resolution and recovery is determined by the balance between processes that, on the one hand, mediate the effects of initial injury and subsequent secondary insults and, on the other, are manifestations of the brain's protective, reparative response. Experimental and clinical research has identified opportunities for altering the balance in a way that might promote recovery, but data demonstrating that this can lead to substantial clinical benefit are lacking. Recent evidence of genetically determined, individual susceptibility to the effects of injury may explain some of the puzzling variability in outcome after apparently similar insults and may also provide new opportunities for treatment.CONCLUSION:The understanding of traumatic brain damage that is being gained from recent research is widening and broadening perspectives from the traditional focus on mechanical, vascular, and metabolic effects to encompass wider, neurobiological issues, drawn from the fields of neurodevelopment, neuroplasticity, neurodegeneration, and neurogenetics. Neurotrauma is a fascinating area of neuroscience research, with promise for the translation of knowledge to improved clinical management and outcome. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Neurosurgery Oxford University Press

Craniocerebral Trauma: Protection and Retrieval of the Neuronal Population after Injury

Craniocerebral Trauma: Protection and Retrieval of the Neuronal Population after Injury

FUNDAMENTAL PROBLEMS Craniocerebral Trauma: Protection and Retrieval of the Neuronal Population after Injury Graham Michael Teasdale, F.R.C.P., F.R.C.S., David Ian Graham, F.R.C.Path. Institute of Neurological Sciences (GMT), Southern General Hospital N H S Trust, and Departments of Neurosurgery and Neuropathology (DIG), University of Glasgow, Glasgow, Scotland OBJECTIVE: To review the consequences of mechanical injury to the brain with an emphasis on factors that may explain the variability of outcomes and how this might be influenced. M ETHODS: Information regarding the pathophysiology of traumatic brain damage contained in original scientific reports and in review articles published in recent years was reviewed from the perspective of a clinical neurosurgeon and a neuropathologist, each with major research interests in traumatic brain damage. The information was compiled on the basis of the knowledge of and personal selection of articles that were identified through selective literature searches and current awareness profiles. A systematic literature review was not conducted. RESULTS: Mechanical input affects neuronal and vascular elements and is translated into biological effects on the brain through a complex series of interacting cellular and molecular events. Whether these lead to permanent structural damage or to resolution and recovery is determined by the balance between processes that, on the one hand, mediate the effects of initial injury and subsequent secondary insults and, on the other, are manifestations of the brain's protective, reparative response. Experimental and clinical research has identified opportunities for altering the balance in a way that might promote recovery, but data demonstrating that this can lead to substantial clinical benefit are lacking. Recent evidence of genetically determined, individual susceptibility to the effects of injury may explain some of the puzzling variability in outcome after apparently similar insults...
Loading next page...
 
/lp/ou_press/craniocerebral-trauma-protection-and-retrieval-of-the-neuronal-GfNUBxK4HX
Publisher
Congress of Neurological Surgeons
Copyright
© Published by Oxford University Press.
ISSN
0148-396X
eISSN
1524-4040
D.O.I.
10.1097/00006123-199810000-00001
Publisher site
See Article on Publisher Site

Abstract

AbstractOBJECTIVE:To review the consequences of mechanical injury to the brain with an emphasis on factors that may explain the variability of outcomes and how this might be influenced.METHODS:Information regarding the pathophysiology of traumatic brain damage contained in original scientific reports and in review articles published in recent years was reviewed from the perspective of a clinical neurosurgeon and a neuropathologist, each with major research interests in traumatic brain damage. The information was compiled on the basis of the knowledge of and personal selection of articles that were identified through selective literature searches and current awareness profiles. A systematic literature review was not conducted.RESULTS:Mechanical input affects neuronal and vascular elements and is translated into biological effects on the brain through a complex series of interacting cellular and molecular events. Whether these lead to permanent structural damage or to resolution and recovery is determined by the balance between processes that, on the one hand, mediate the effects of initial injury and subsequent secondary insults and, on the other, are manifestations of the brain's protective, reparative response. Experimental and clinical research has identified opportunities for altering the balance in a way that might promote recovery, but data demonstrating that this can lead to substantial clinical benefit are lacking. Recent evidence of genetically determined, individual susceptibility to the effects of injury may explain some of the puzzling variability in outcome after apparently similar insults and may also provide new opportunities for treatment.CONCLUSION:The understanding of traumatic brain damage that is being gained from recent research is widening and broadening perspectives from the traditional focus on mechanical, vascular, and metabolic effects to encompass wider, neurobiological issues, drawn from the fields of neurodevelopment, neuroplasticity, neurodegeneration, and neurogenetics. Neurotrauma is a fascinating area of neuroscience research, with promise for the translation of knowledge to improved clinical management and outcome.

Journal

NeurosurgeryOxford University Press

Published: Oct 1, 1998

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off