Collision strengths for FIR and UV transtions in P iii and the phosphorus abundance

Collision strengths for FIR and UV transtions in P iii and the phosphorus abundance Abstract Phosphorus abundance is crucial for DNA-based extraterrestrial life in exoplanets. Atomic data for observed spectral lines of P-ions are needed for its accurate determination. We present the first calculations for collision strengths for the forbidden [P iii] fine structure transition $$3s^23p (^2P^o_{1/2-3/2})$$ within the ground state at 17.9 μm , as well as allowed UV transitions in the $$3s^23p (^2P^o_{1/2,3/2}) \rightarrow 3s3p^2 (^2D_{3/2,5/2}, ^2S_{1/2}, ^2P_{1/2,3/2})$$ multiplets between 915-1345 Å. Collision strengths are computed using the Breit-Pauli R-Matrix method including the first 18 levels, and they exhibit extensive auto-ionizing resonance structures. In particular, the Maxwellian averaged effective collision strength for the FIR 17.9 μm transition shows a factor 3 temperature variation broadly peaking at typical nebular temperatures. Its theoretical emissivity with solar phosphorus abundance is computed relative to Hβ and found to be similar to observed intensties from planetary nebulae; the abundances derived in earlier works are 3-5 times sub-solar. The results pertain to the reported paucity of phosphorus from preferred production sites in supernovae, and abundances in planetary nebulae and supernova remnants. ISM: atoms - Interstellar Medium (ISM), Nebulae, ISM: supernova remnants, Physical Data and Processes - atomic processes, astrobiology, infrared: general © 2018 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society This article is published and distributed under the term of oxford University Press, standard Journals Publication Model (https://academic.oup.com/journals/pages/about_us/legal/notices) http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Monthly Notices of the Royal Astronomical Society: Letters Oxford University Press

Collision strengths for FIR and UV transtions in P iii and the phosphorus abundance

Loading next page...
 
/lp/ou_press/collision-strengths-for-fir-and-uv-transtions-in-p-iii-and-the-miNd76NdVA
Publisher
Oxford University Press
Copyright
© 2018 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society
ISSN
1745-3925
eISSN
1745-3933
D.O.I.
10.1093/mnrasl/sly095
Publisher site
See Article on Publisher Site

Abstract

Abstract Phosphorus abundance is crucial for DNA-based extraterrestrial life in exoplanets. Atomic data for observed spectral lines of P-ions are needed for its accurate determination. We present the first calculations for collision strengths for the forbidden [P iii] fine structure transition $$3s^23p (^2P^o_{1/2-3/2})$$ within the ground state at 17.9 μm , as well as allowed UV transitions in the $$3s^23p (^2P^o_{1/2,3/2}) \rightarrow 3s3p^2 (^2D_{3/2,5/2}, ^2S_{1/2}, ^2P_{1/2,3/2})$$ multiplets between 915-1345 Å. Collision strengths are computed using the Breit-Pauli R-Matrix method including the first 18 levels, and they exhibit extensive auto-ionizing resonance structures. In particular, the Maxwellian averaged effective collision strength for the FIR 17.9 μm transition shows a factor 3 temperature variation broadly peaking at typical nebular temperatures. Its theoretical emissivity with solar phosphorus abundance is computed relative to Hβ and found to be similar to observed intensties from planetary nebulae; the abundances derived in earlier works are 3-5 times sub-solar. The results pertain to the reported paucity of phosphorus from preferred production sites in supernovae, and abundances in planetary nebulae and supernova remnants. ISM: atoms - Interstellar Medium (ISM), Nebulae, ISM: supernova remnants, Physical Data and Processes - atomic processes, astrobiology, infrared: general © 2018 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society This article is published and distributed under the term of oxford University Press, standard Journals Publication Model (https://academic.oup.com/journals/pages/about_us/legal/notices)

Journal

Monthly Notices of the Royal Astronomical Society: LettersOxford University Press

Published: Jun 5, 2018

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off