Carcass characteristics and meat quality of broilers fed with different levels of Saccharomyces cerevisiae fermentation product

Carcass characteristics and meat quality of broilers fed with different levels of Saccharomyces... ABSTRACT Fermented products and components of Saccharomyces cerevisiae have been widely used in animal nutrition to promote the development and quality of broilers. This study aims to evaluate different levels of inclusion (0, 250, 750, 1,500 g/t) of S. cerevisiae fermentation product (SCFP) in broiler feed to gauge its effect on carcass characteristics and cuts beyond the quality of breast meat. For analyses of carcass yield, cuts, and meat quality, 16 broilers per treatment were slaughtered. The meat quality analyses were performed 24 h after slaughter and evaluated color, pH, water holding capacity, cooking loss, and shear force. Lipid oxidation was determined in frozen breast samples stored at –20°C for 45 d. The results indicate that different levels of inclusion of SCFP provided no changes in carcass yield, color, water holding capacity, cooking loss, and shear force; however, inclusion of 1,500 g/t of SCFP increased leg yield and reduced pH. The inclusion of 750 g/t of SCFP decreased the lipid oxidation of breast meat (P < 0.05). This study concluded that inclusion of SCFP may improve leg yield and the lipid oxidation of breast meat. INTRODUCTION The Saccharomyces cerevisiae fermentation product (SCFP) has been widely used in animal nutrition worldwide. In broiler production, it has been shown to be an important tool for reducing coccidian and aflatoxin lesion (Osweiler et al., 2010; McIntyre et al., 2013). In addition, its use is subject to improvements on the performance and support of the immune system (Gao et al., 2008). The SCFP is derived from natural fermentation products and contains yeast cell wall (β-glucan and mannan oligosaccharides), vitamins, proteins, peptides, amino acids, nucleotides, organic acids, alcohols, and esters. SCFP is considered a multimodulator of the immune system with antioxidant and anti-inflammatory effects (Jensen et al., 2007). Because they show a very broad nutritional composition, the different compounds of SCFP can act in improving animal performance and, consequently, increase the yield of commercial cuts of broilers. In relation to the anti-inflammatory and antioxidant effects, a study carried out by Jensen et al. (2007) observed that after intake of SCFP in humans, erythrocytes and neutrophils demonstrated inhibition of the formation of reactive oxygen species. One of the ways to form free radicals involves biochemical cascade reactions of arachidonic acid, which is released through activation of phospholipase A2. These free radicals increase lipid oxidation in chicken; this problem is a major cause of loss of meat quality after microbial spoilage as demonstrated by Soares et al. (2009). The aim of this study was to evaluate the effect of different levels of inclusion (0, 250, 750, and 1,500 g/t) of SCFP on carcass characteristics, cuts, and meat quality of broiler chickens. MATERIALS AND METHODS The experimental procedures that are described in this study were approved by the Animal Ethics Committee of Universidade Estadual de Londrina. Birds and Treatments The broilers were fed during 42 d of life with a ration that met the minimum requirements recommended by Rostagno et al. (2011), with meals made with corn and soybean (Table 1). The experimental treatments consisted of providing different levels (0, 250, 750, and 1,500 g/t) of SCFP (Diamond V Original XPC, Cedar Rapids, IA). Broiler males (n = 64) of Cobb 500 were utilized, with 2 broilers per repetition to total 16 broilers/treatment. These broilers represented the average of weight of each experimental plot and were slaughtered at 43 d old to analyze carcass yield, cuts, and meat quality. Table 1. Percentage composition and calculated of experimental diets for broilers. Ingredients (%)  Pre-initial 1 to 7 d  Initial 8 to 21 d  Growth 22 to 35 d  Final 36 to 42 d  Corn  58.0  62.3  63.5  66.8  Soybean meal 46%  37.0  32.0  30.0  26.6  Soybean oil  0.0  0.7  1.5  1.6  Premix  5.0  5.0  5.0  5.0  Total  100.0  100.0  100.0  100.0  Nutritional levels          Metabolic energy (kcal/kg)  2950  3034  3103  3146  Crude protein (%)  22.11  20.03  19.11  17.77  Calcium (%)  1.12  0.99  0.94  0.94  Available phosphorus (%)  0.46  0.42  0.40  0.38  Digestible lysin. (%)  1.31  1.15  1.06  0.99  Digestible methionine (%)  0.63  0.53  0.49  0.40  Digestible Met+Cist. (%)  0.94  0.82  0.77  0.67  Digestible threonine (%)  0.85  0.75  0.68  0.64  Sodium (%)  0.24  0.22  0.18  0.18  Ingredients (%)  Pre-initial 1 to 7 d  Initial 8 to 21 d  Growth 22 to 35 d  Final 36 to 42 d  Corn  58.0  62.3  63.5  66.8  Soybean meal 46%  37.0  32.0  30.0  26.6  Soybean oil  0.0  0.7  1.5  1.6  Premix  5.0  5.0  5.0  5.0  Total  100.0  100.0  100.0  100.0  Nutritional levels          Metabolic energy (kcal/kg)  2950  3034  3103  3146  Crude protein (%)  22.11  20.03  19.11  17.77  Calcium (%)  1.12  0.99  0.94  0.94  Available phosphorus (%)  0.46  0.42  0.40  0.38  Digestible lysin. (%)  1.31  1.15  1.06  0.99  Digestible methionine (%)  0.63  0.53  0.49  0.40  Digestible Met+Cist. (%)  0.94  0.82  0.77  0.67  Digestible threonine (%)  0.85  0.75  0.68  0.64  Sodium (%)  0.24  0.22  0.18  0.18  Pre-initial: Calcium 150 g; phosphorus 32 g; lysin 3,275 g; methionine 6,094 g; threonine 1,960 g; vitamin A 140,000 IU; vitamin D3 40,000 IU; vitamin E 220 IU; vitamin K3 2,622 mg, vitamin B1 3,920 mg; vitamin B2 96 mg; vitamin B6 3,920 mg; vitamin B 12,200 mcg; niacin 70,460 mg; pantothenic acid 23,520 mg; folic acid 1,960 mg; biotin 0.80 mg; vitamin B8 5,928 mg; sodium 44 g; manganese 1,200 mg; zinc 1,000 mg; iron 800 mg; copper 160 mg; iodine 1,868 mg; selenium 9 mg; Initial: Calcium 150 g; phosphorus 27 g; lysin 2,560 g; methionine 4,150 g; threonine 1,176 g; vitamin A 140,000 IU; vitamin D3 40,000 IU; vitamin E 220 IU; vitamin K3 2,622 mg; vitamin B1 3,920 mg; vitamin B2 96 mg; vitamin B6 3,920 mg; vitamin B12 200 mcg; niacin 70,460 mg; pantothenic acid 23,520 mg; folic acid 1,960 mg; biotin 0.80 mg; vitamin B8 5,928 mg; sodium 40 g; manganese 1,200 mg; zinc 1,000 mg; iron 800 mg; copper 160 mg; iodine 1,844 mg; selenium 9 mg; Growth: Calcium 100 g; phosphorus 24 g; lysin 16 g; methionine 39 g; threonine 3,920 mg; vitamin A 110,000 IU; vitamin D3 24,000 IU; vitamin E 200 IU; vitamin K3 24 mg; vitamin B1 24 mg; vitamin B2 80 mg; vitamin B6 38 mg; vitamin B12 160 mcg; niacin 560 mg; pantothenic acid 180 mg; folic acid 12 mg; vitamin B8 5,200 mg; sodium 31 g; manganese 1,200 mg; zinc 1,000 mg; iron 800 mg; copper 160 mg; iodine 1,791 mg; selenium 5 mg; Final: Calcium 100 g; phosphorus 21 g; lysin 1,760 g; methionine 2,380 g; threonine 3,920 mg; vitamin A 110,000 IU; vitamin D3 10,000 IU; vitamin E 110 IU; vitamin K3 11 mg; vitamin B2 40 mg; vitamin B12 100 mcg; niacin 400 mg; pantothenic acid 130 mg; vitamin B8 2,183 mg; sodium 32 g; manganese 1,200 mg; zinc 1,000 mg; iron 800 mg; copper 160 mg; iodine 1,795 mg; selenium 5 mg. View Large Table 1. Percentage composition and calculated of experimental diets for broilers. Ingredients (%)  Pre-initial 1 to 7 d  Initial 8 to 21 d  Growth 22 to 35 d  Final 36 to 42 d  Corn  58.0  62.3  63.5  66.8  Soybean meal 46%  37.0  32.0  30.0  26.6  Soybean oil  0.0  0.7  1.5  1.6  Premix  5.0  5.0  5.0  5.0  Total  100.0  100.0  100.0  100.0  Nutritional levels          Metabolic energy (kcal/kg)  2950  3034  3103  3146  Crude protein (%)  22.11  20.03  19.11  17.77  Calcium (%)  1.12  0.99  0.94  0.94  Available phosphorus (%)  0.46  0.42  0.40  0.38  Digestible lysin. (%)  1.31  1.15  1.06  0.99  Digestible methionine (%)  0.63  0.53  0.49  0.40  Digestible Met+Cist. (%)  0.94  0.82  0.77  0.67  Digestible threonine (%)  0.85  0.75  0.68  0.64  Sodium (%)  0.24  0.22  0.18  0.18  Ingredients (%)  Pre-initial 1 to 7 d  Initial 8 to 21 d  Growth 22 to 35 d  Final 36 to 42 d  Corn  58.0  62.3  63.5  66.8  Soybean meal 46%  37.0  32.0  30.0  26.6  Soybean oil  0.0  0.7  1.5  1.6  Premix  5.0  5.0  5.0  5.0  Total  100.0  100.0  100.0  100.0  Nutritional levels          Metabolic energy (kcal/kg)  2950  3034  3103  3146  Crude protein (%)  22.11  20.03  19.11  17.77  Calcium (%)  1.12  0.99  0.94  0.94  Available phosphorus (%)  0.46  0.42  0.40  0.38  Digestible lysin. (%)  1.31  1.15  1.06  0.99  Digestible methionine (%)  0.63  0.53  0.49  0.40  Digestible Met+Cist. (%)  0.94  0.82  0.77  0.67  Digestible threonine (%)  0.85  0.75  0.68  0.64  Sodium (%)  0.24  0.22  0.18  0.18  Pre-initial: Calcium 150 g; phosphorus 32 g; lysin 3,275 g; methionine 6,094 g; threonine 1,960 g; vitamin A 140,000 IU; vitamin D3 40,000 IU; vitamin E 220 IU; vitamin K3 2,622 mg, vitamin B1 3,920 mg; vitamin B2 96 mg; vitamin B6 3,920 mg; vitamin B 12,200 mcg; niacin 70,460 mg; pantothenic acid 23,520 mg; folic acid 1,960 mg; biotin 0.80 mg; vitamin B8 5,928 mg; sodium 44 g; manganese 1,200 mg; zinc 1,000 mg; iron 800 mg; copper 160 mg; iodine 1,868 mg; selenium 9 mg; Initial: Calcium 150 g; phosphorus 27 g; lysin 2,560 g; methionine 4,150 g; threonine 1,176 g; vitamin A 140,000 IU; vitamin D3 40,000 IU; vitamin E 220 IU; vitamin K3 2,622 mg; vitamin B1 3,920 mg; vitamin B2 96 mg; vitamin B6 3,920 mg; vitamin B12 200 mcg; niacin 70,460 mg; pantothenic acid 23,520 mg; folic acid 1,960 mg; biotin 0.80 mg; vitamin B8 5,928 mg; sodium 40 g; manganese 1,200 mg; zinc 1,000 mg; iron 800 mg; copper 160 mg; iodine 1,844 mg; selenium 9 mg; Growth: Calcium 100 g; phosphorus 24 g; lysin 16 g; methionine 39 g; threonine 3,920 mg; vitamin A 110,000 IU; vitamin D3 24,000 IU; vitamin E 200 IU; vitamin K3 24 mg; vitamin B1 24 mg; vitamin B2 80 mg; vitamin B6 38 mg; vitamin B12 160 mcg; niacin 560 mg; pantothenic acid 180 mg; folic acid 12 mg; vitamin B8 5,200 mg; sodium 31 g; manganese 1,200 mg; zinc 1,000 mg; iron 800 mg; copper 160 mg; iodine 1,791 mg; selenium 5 mg; Final: Calcium 100 g; phosphorus 21 g; lysin 1,760 g; methionine 2,380 g; threonine 3,920 mg; vitamin A 110,000 IU; vitamin D3 10,000 IU; vitamin E 110 IU; vitamin K3 11 mg; vitamin B2 40 mg; vitamin B12 100 mcg; niacin 400 mg; pantothenic acid 130 mg; vitamin B8 2,183 mg; sodium 32 g; manganese 1,200 mg; zinc 1,000 mg; iron 800 mg; copper 160 mg; iodine 1,795 mg; selenium 5 mg. View Large Carcass Characteristics For evaluation of carcass yield, cuts, and quality of meat, selected broilers were subjected to pre-slaughter fasting for 8 h. Then, they were subjected to heat stress in a thermal chamber at 36°C for 30 min. Immediately afterward, the broilers were weighed to determine the weight of slaughter, which was used for determining the carcass and cut yield. Birds were electrically stunned in water bath equipment (Model FX 2.0, Fluxo, Chapecó, Brazil), where they were exposed for 10 s to an electrical current (800-Hz frequency and 42-V voltage) and then bled, scalded, plucked, eviscerated, and cut up to determine the carcass and parts yields. Carcass yield was calculated as carcass weight without the head, feet, and neck and was determined immediately after evisceration relative to live weight. Breast, legs (thigh and drumstick), back, and wing yields were calculated as their weight relative to eviscerated carcass weight. Meat Quality After the determination of the carcass and yield cuts, breast (pectoralis major) meat samples were removed from carcasses approximately 20 min after slaughter, placed in labeled plastic bags, sealed, chilled in an ice bath, and stored at 4°C for 24 h, after which they were analyzed for meat quality traits such as pH, color, water holding capacity (WHC), cooking loss (CL), and shear force. The pH was measured by inserting electrodes into the meat samples using a contact pH meter system (Model 205, Testo AG, Lenzkirch, Germany), as reported previously by Olivo et al. (2001). The color measurements were taken on the dorsal surface of the samples using a Minolta chromameter (Model CR10, Minolta, Osaka, Japan). The L*, a*, and b* measurements were evaluated according to the CIELAB system, where L* corresponds to lightness, a* to redness (between green and red), and b* to yellowness (between blue and yellow). Average L*, a*, and b* values were calculated from 3 readings in different positions. The WHC was determined according to the method described by Hamm (1960). Twenty-four hours post mortem, samples were collected from the cranial side of the breast fillets and cut into 2.0-g (±0.10) cubes. The samples were analyzed in duplicate. They were first carefully placed between 2 filter papers and then left under a 10-kg weight for 5 min. The samples were then weighed, and WHC was determined according the following equation:   \begin{equation*}{\rm{WHC}}\ \ \left( \% \right) = \ 100 - \ \left[ {\left( {\frac{{Wi - Wf}}{{Wi}}} \right)\rm{X}\ 100} \right]\end{equation*}where Wi and Wf are the initial and final sample weights, respectively. Cooking loss was determined according to the methodology proposed by Cason et al. (1997). Raw breast meat samples were weighed (±90 g), packaged, and steam-cooked in a water bath at 85°C for 30 min until an internal end-point temperature of 75 to 80°C was reached. Samples were then left to cool until room temperature was reached and were then weighed. Cooking loss was calculated as CL (%) = 100 × (1– cooked weight/fresh weight). Shear force was determined using the CT3 Texture Analyzer (Brookfield, Germany) coupled to a Warner–Bratzler probe. The cooked breast muscle samples used for the determination of CLs were tested. The samples were cut into 1.5-cm-wide and 1.0-cm-deep slices and then placed perpendicular to the Warner–Bratzler blade. The maximum force required to cut the slices was determined (kgf). Lipid oxidation was determined in samples of breasts stored at –20°C for 45 d, as described by Pikul et al. (1989). Statistical Analysis The data were submitted to analysis of variance, and the means were subsequently compared by Tukey's test at a 5% significance level. RESULTS AND DISCUSSION Carcass Yield According the results obtained about carcass weight (Table 2), the treatment without inclusion of SCFP showed more weight when compared treatments with 250 and 750 g/t of SCFP (P < 0.05), and no difference was find when the inclusion was 1,500 g/t of SCFP. Thereby, this study demonstrated that when we used the inclusion of 1,500 g/t of SCFP in the feed of broilers, there was an increase in leg yield (P < 0.05) but no changes in carcass and other cut yields (Table 2). The results are in agreement with results of the experiment conducted by Miazzo and Peralta (2005), who observed higher yields of leg and breast in addition to a reduction of abdominal fat in broilers fed 0.3% of yeast in the ration. Karaoglu and Durdag (2005) and Chumpawadee et al. (2008) found no effect of using S. cerevisiae on the carcass yield of broilers. However, different results were obtained by Fathi et al. (2012), who worked with different levels of S. cerevisae and observed an increased yield of breast when using 1.5 g/kg of the product in feed. In another study conducted by Kidd et al. (2013), when broiler breeders were fed with products based on S. cerevisiae, the progeny showed more breast yield when compared with the control group. The increase of cut yield may be related to a use of S. cerevisiae as a dietary tool that can provide a better absorption and digestibility of some nutrients such as minerals and vitamins. According to Powell et al. (2014), the nutritional regimen can stimulate the proliferation and differentiation of satellite cells and may increase some cut yields. Table 2. Carcass weight (CW), carcass yield (CY), breast yield (BY), back yield (BcY), wings yield (WY), and legs yield (LY) of broilers with 43 –da old, fed with different levels of Saccharomyces cerevisiae fermentation product (SCFP).   Analyzed variables  SCFP (g/t)  CW(g)  CY (%)  BY (%)  BcY (%)  WY (%)  LY (%)  0  2118a  73.26  40.64  19.63  10.27  29.45b  250  2050ab  73.23  39.44  19.29  10.44  30.82ab  750  2038b  73.23  39.80  19.45  10.28  30.46ab  1500  2090ab  73.03  39.77  19.17  10.32  30.73a  CV %  3,93  2.29  4.70  5.62  3.98  4.54  P value  0.026  0.976  0.323  0.657  0.604  0.026    Analyzed variables  SCFP (g/t)  CW(g)  CY (%)  BY (%)  BcY (%)  WY (%)  LY (%)  0  2118a  73.26  40.64  19.63  10.27  29.45b  250  2050ab  73.23  39.44  19.29  10.44  30.82ab  750  2038b  73.23  39.80  19.45  10.28  30.46ab  1500  2090ab  73.03  39.77  19.17  10.32  30.73a  CV %  3,93  2.29  4.70  5.62  3.98  4.54  P value  0.026  0.976  0.323  0.657  0.604  0.026  CV % = coefficient of variation, (P < 0.05). View Large Table 2. Carcass weight (CW), carcass yield (CY), breast yield (BY), back yield (BcY), wings yield (WY), and legs yield (LY) of broilers with 43 –da old, fed with different levels of Saccharomyces cerevisiae fermentation product (SCFP).   Analyzed variables  SCFP (g/t)  CW(g)  CY (%)  BY (%)  BcY (%)  WY (%)  LY (%)  0  2118a  73.26  40.64  19.63  10.27  29.45b  250  2050ab  73.23  39.44  19.29  10.44  30.82ab  750  2038b  73.23  39.80  19.45  10.28  30.46ab  1500  2090ab  73.03  39.77  19.17  10.32  30.73a  CV %  3,93  2.29  4.70  5.62  3.98  4.54  P value  0.026  0.976  0.323  0.657  0.604  0.026    Analyzed variables  SCFP (g/t)  CW(g)  CY (%)  BY (%)  BcY (%)  WY (%)  LY (%)  0  2118a  73.26  40.64  19.63  10.27  29.45b  250  2050ab  73.23  39.44  19.29  10.44  30.82ab  750  2038b  73.23  39.80  19.45  10.28  30.46ab  1500  2090ab  73.03  39.77  19.17  10.32  30.73a  CV %  3,93  2.29  4.70  5.62  3.98  4.54  P value  0.026  0.976  0.323  0.657  0.604  0.026  CV % = coefficient of variation, (P < 0.05). View Large Meat Quality The results of meat color (Table 3) show that different levels of SCFP inclusion in broiler feed did not change the brightness and intensity of red and yellow. The color is an important parameter of evaluation, because the consumer analyzes differences in color as a standard of the product. This change is associated with a loss of quality. The results of this study are in agreement with those of Pelicano et al. (2005), who found no differences in color standards of broiler breast samples with added diet products with components of S. cerevisiae as a prebiotic. Table 3. Results of luminosity (L*), intensity of red (a*) and yellow (b*), and pH of samples of breast chicken fed with different levels of inclusion of Saccharomyces cerevisiae fermentation product (SCFP).   Analyzed variables  SCFP (g/t)  L*  a*  b*  pH (24 h)  0  52.09  2.56  13.18  5.92a  250  52.40  2.62  13.00  5.86ab  750  53.43  2.48  13.70  5.90ab  1500  53.58  2.26  13.66  5.81b  CV%  5.03  45.70  10.71  1.88  P value  0.30  0.821  0.426  0.025    Analyzed variables  SCFP (g/t)  L*  a*  b*  pH (24 h)  0  52.09  2.56  13.18  5.92a  250  52.40  2.62  13.00  5.86ab  750  53.43  2.48  13.70  5.90ab  1500  53.58  2.26  13.66  5.81b  CV%  5.03  45.70  10.71  1.88  P value  0.30  0.821  0.426  0.025  CV % = coefficient of variation (P < 0.05). View Large Table 3. Results of luminosity (L*), intensity of red (a*) and yellow (b*), and pH of samples of breast chicken fed with different levels of inclusion of Saccharomyces cerevisiae fermentation product (SCFP).   Analyzed variables  SCFP (g/t)  L*  a*  b*  pH (24 h)  0  52.09  2.56  13.18  5.92a  250  52.40  2.62  13.00  5.86ab  750  53.43  2.48  13.70  5.90ab  1500  53.58  2.26  13.66  5.81b  CV%  5.03  45.70  10.71  1.88  P value  0.30  0.821  0.426  0.025    Analyzed variables  SCFP (g/t)  L*  a*  b*  pH (24 h)  0  52.09  2.56  13.18  5.92a  250  52.40  2.62  13.00  5.86ab  750  53.43  2.48  13.70  5.90ab  1500  53.58  2.26  13.66  5.81b  CV%  5.03  45.70  10.71  1.88  P value  0.30  0.821  0.426  0.025  CV % = coefficient of variation (P < 0.05). View Large The inclusion of different levels of SCFP changed the pH of the breast (P < 0.05), as shown in Table 3. When we provided 1,500 g/t of SCPF, there was a pH reduction (P < 0.05). The reduction of pH is related to the concentration of glycogen. When the anaerobic pathway is used post mortem, energy and lactic acid are generated, thereby reducing pH. Despite differences in pH, the values of the samples are considered normal for chicken breast (Sheard et al., 2012), which explains the lack of effect on parameters such as WHC, CL, and shear force (Table 4). The reduction in pH may promote denaturation of myofibrillar proteins, resulting in a loss of functional capacity of these proteins to retain water in the cell, thereby creating economic losses by dropping carcass and cut yield in the industry. Table 4. Results of water holding capacity (WHC); cooking loss (PPC), shear force (SF), and lipid oxidation (TBARS) of broiler chickens fed with different levels of Saccharomyces cerevisiae fermentation product (SCFP).   Analyzed variables  SCFP (g/t)  WHC (%)  CL (%)  SF (kgf)  TBARS (mg/kg)  0  71.45  25.04  3.01  0.575a  250  69.81  26.88  3.44  0.451ab  750  69.91  23.41  2.92  0.451b  1500  68.90  24.78  3.45  0.533ab  CV %  4.98  15.23  33.13  20.49  P value  0.232  0.095  0.355  0.003    Analyzed variables  SCFP (g/t)  WHC (%)  CL (%)  SF (kgf)  TBARS (mg/kg)  0  71.45  25.04  3.01  0.575a  250  69.81  26.88  3.44  0.451ab  750  69.91  23.41  2.92  0.451b  1500  68.90  24.78  3.45  0.533ab  CV %  4.98  15.23  33.13  20.49  P value  0.232  0.095  0.355  0.003  CV % = coefficient of variation (P < 0.05). View Large Table 4. Results of water holding capacity (WHC); cooking loss (PPC), shear force (SF), and lipid oxidation (TBARS) of broiler chickens fed with different levels of Saccharomyces cerevisiae fermentation product (SCFP).   Analyzed variables  SCFP (g/t)  WHC (%)  CL (%)  SF (kgf)  TBARS (mg/kg)  0  71.45  25.04  3.01  0.575a  250  69.81  26.88  3.44  0.451ab  750  69.91  23.41  2.92  0.451b  1500  68.90  24.78  3.45  0.533ab  CV %  4.98  15.23  33.13  20.49  P value  0.232  0.095  0.355  0.003    Analyzed variables  SCFP (g/t)  WHC (%)  CL (%)  SF (kgf)  TBARS (mg/kg)  0  71.45  25.04  3.01  0.575a  250  69.81  26.88  3.44  0.451ab  750  69.91  23.41  2.92  0.451b  1500  68.90  24.78  3.45  0.533ab  CV %  4.98  15.23  33.13  20.49  P value  0.232  0.095  0.355  0.003  CV % = coefficient of variation (P < 0.05). View Large Table 4 shows that other variables, such as WHC, CL, and shear force, were not affected by the different levels of SCFP inclusion in the broiler feed. These results are similar to studies conducted by Pelicano et al. (2005), who found no differences in the results of CL and texture when the broilers were fed with components of yeast product. In this study, the inclusion of SCFP reduced (P < 0.05) lipid oxidation (Table 4), which is a factor of great relevance to the consumer's decision in purchasing the product, because oxidation indicates quality as a change in smell or reduction in shelf life. The reduction of this change in meat quality observed in this study may be related to anti-inflammatory and antioxidant effects of the components present in the product, such as phenolic compounds and vitamin E. The broiler chickens were submitted to heat stress at a temperature of 36°C for 30 min during the pre-slaughter period. This procedure was performed with the aim of forcing the development of myopathy in meat due to increased creatinine kinase, which is related to muscle damage (Mitchell and Sandercock, 1995). According to Han et al. (2010), heat stress leads to alteration of homeostasis, increasing the rate of breathing, which can lead to increased production of free radicals that damages the cell phospholipid membranes and favors the oxidation of meat. Another modification related to heat stress is the change in the pump activity of Na+/K+ ATPase (DuBourdieu and Shier, 1992). Blaustein et al. (1999) suggested that the mechanism of Na+ can mediate the uptake of Ca++ from the extracellular environment to the intracellular environment by changing Na+/K+ to Na+/Ca++. This mechanism was confirmed by Sandercock and Mitchell (2004), who used an ionophore agent (monensin) and ouabain in the diet of broiler chickens and found an increased concentration of intracellular Ca++, thus leading to injury and increased release of the enzyme creatinine kinase. The breakdown of homeostasis generated by stress, coupled with an increase in intracellular calcium concentration, can lead to possible injury in the phospholipid membrane. Consequently, there is an increase in phospholipase A2 activity that stimulates the synthesis of arachidonic acid, which is a precursor of cyclooxygenase and lipoxygenase. These changes lead to the formation of eicosanoids, such as prostaglandins and leukotrienes, which are important inflammatory mediators (Touqui and Alaoui-El-Azher, 2001) and free radicals (Soares et al., 2009). The formation of free radicals or reactive oxygen species can occur through the action of the enzyme cyclooxygenase on arachidonic acid, which is released from phospholipase A2 activity of the hydroxyl radical and is the most reactive intermediate for the formation of free radicals. This is one of the most important components for the lipid oxidation of cell membranes (Schneider and de Oliveira, 2004). This oxidation is increased when the broilers are subjected to heat stress (Altan et al., 2000; Lin et al., 2000). Thus, the use of SCFP may have inhibited lipid oxidation of meat of chickens by the production of constituents (flavonoids and vitamin E) that exhibit anti-inflammatory and antioxidant activity. According to Manthey et al. (2001), flavonoids have an anti-inflammatory effect and the ability to inhibit the activity of phospholipase A2, and may improve the resistance to heat stress as reported by Price et al. (2018). Vitamin E (α-tocopherol), present in the SCFP, acts as an antioxidant by reducing the lipid oxidation of meat. Avila-Ramos et al. (2013) found that working with levels of 10 and 100 ppm of vitamin E decreased lipid oxidation in samples of breast meat that were 45 d old. Aristides et al. (2012) used products based on SCFP in broilers and observed a reduction in lipid oxidation. The same results were observed by Zhang et al. (2005), where the addition of 0.3, 1, and 3% of SCFP reduced lipid oxidation in chicken breast compared to the control treatment. CONCLUSIONS In summary, the present study showed that the inclusion of 1,500 g/t of SCFP may increase the leg yield and reduce the pH of meat in values that are considered normal. Additionally, the study demonstrated that the inclusion of 750 g/t of SCFP may be an important tool to reduce the lipid oxidation of meat and increase the shelf life of the product. ACKNOWLEDGMENTS The authors express their gratitude to the Department of Animal Science of Universidade Estadual de Londrina, CNPq, and the companies Tectron Nutrição Animal and Diamond V Mills. REFERENCES Altan O., Altan A., Oguz I., Pabuccuoglu A., Konyalioglu S.. 2000. Effects of heat stress on growth, some blood variables and lipid oxidation in broilers exposed to high temperature at an early age. Br. Poult. Sci.  41: 489– 493. Google Scholar CrossRef Search ADS PubMed  Aristides L. G. A., Paiao F. G., Murate L. S., Oba A., Shimokomaki M.. 2012. The effects of biotic additives on growth performance and meat qualities in broiler chickens. Int. J. Poult. Sci.  11: 599– 604. Google Scholar CrossRef Search ADS   Avila-Ramos F., Pro-Martinez A., Sosa-Montes E., Cuca-Garcia J. M., Becerril-Perez C., Figueroa-Velasco J. L., Ruiz-Feria C. A., Hernandez-Cazares A. S., Narciso-Gaytan C.. 2013. Dietary supplemented and meat-added antioxidants effect on the lipid oxidative stability of refrigerated and frozen cooked chicken meat. Poult. Sci.  92: 243– 249. Google Scholar CrossRef Search ADS PubMed  Blaustein M. P., Blaustein M. P., Lederer W. J., Lederer W. J.. 1999. Sodium/calcium exchange: its physiological implications. Physiol. Rev.  79: 763– 854. Google Scholar CrossRef Search ADS PubMed  Cason J. A., Lyon C. E., Papa C. M.. 1997. Effect of muscle opposition during rigor on development of broiler breast meat tenderness. Poult. Sci.  76: 785– 787. Google Scholar CrossRef Search ADS PubMed  Chumpawadee S., Chinrasri O., Somchan T., Ngamluan S., Soychuta S.. 2008. Effect of dietary inclusion of cassava yeast as probiotic source on growth performance, small intestine (Ileum) morphology and carcass characteristic in broilers. Int. J. Poult. Sci.  7: 246– 250. Google Scholar CrossRef Search ADS   DuBourdieu D. J., Shier W. T.. 1992. Sodium- and calcium-dependent steps in the mechanism of neonatal rat cardiac myocyte killing by ionophores. Toxicol. Appl. Pharmacol.  116: 47– 56. Google Scholar CrossRef Search ADS PubMed  Fathi M. M., Al-Mansour S., Al-Homidan A., Al-Khalaf A., Al-Damegh M.. 2012. Effect of yeast culture supplementation on carcass yield and humoral immune response of broiler chicks. Vet. World  5: 651– 657. Google Scholar CrossRef Search ADS   Gao J., Zhang H. J., Yu S. H., Wu S. G., Yoon I., Quigley J., Gao Y. P., Qi G. H.. 2008. Effects of yeast culture in broiler diets on performance and immunomodulatory functions. Poult. Sci.  87: 1377– 1384. Google Scholar CrossRef Search ADS PubMed  Hamm R. 1960. Biochemistry of meat hydration. Adv. Food Res.  10: 355– 463. Google Scholar CrossRef Search ADS PubMed  Han A. Y., Zhang M. H., Zuo X. L., Zheng S. S., Zhao C. F., Feng J. H., Cheng C.. 2010. Effect of acute heat stress on calcium concentration, proliferation, cell cycle, and interleukin-2 production in splenic lymphocytes from broiler chickens. Poult. Sci.  89: 2063– 2070. Google Scholar CrossRef Search ADS PubMed  Jensen G. S., Hart A. N., Schauss A. G.. 2007. An antiinflammatory immunogen from yeast culture induces activation and alters chemokine receptor expression on human natural killer cells and B lymphocytes in vitro. Nutr. Res.  27: 327– 335. Google Scholar CrossRef Search ADS   Karaoglu M., Durdag H.. 2005. The influence of dietary probiotic (Saccharomyces cerevisiae) supplementation and different slaughter age on the performance, slaughter and carcass properties of broilers. Int. J. Poult. Sci.  4: 309– 316. Google Scholar CrossRef Search ADS   Kidd M. T., Araujo L., Araujo C., McDaniel C. D., McIntyre D.. 2013. A study assessing hen and progeny performance through dam diet fortification with a Saccharomyces cerevisiae fermentation product. J. Appl. Poult. Res.  22: 872– 877. Google Scholar CrossRef Search ADS   Lin H., Du R., Zhang Z. Y.. 2000. Peroxide status in tissues of heat-stressed broilers. Asian Australas. J. Anim. Sci.  13: 1373– 1376. Google Scholar CrossRef Search ADS   Manthey J. A., Guthrie N., Grohmann K.. 2001. Biological properties of citrus flavonoids pertaining to cancer and inflammation. Curr. Med. Chem.  8: 135– 153. Google Scholar CrossRef Search ADS PubMed  McIntyre D., Broomhead J. N., Mathis G. F., Lumpkins B.. 2013. Effects of feeding original XPC and salinomycin during a coccidia challenge in broilers. Poult. Sci.  92( Suppl.1): 59– 60. Miazzo R. D., Peralta M. F.. 2005. Performance Productiva y Calidad de la canal en Broilers que recibieron Levadura de Cerveza (S. cerevisiae) (productive performance and carcass quality in broilers fed yeast (S. cerevisiae)). Rev. Electron. Vet . VI: 1– 9. Mitchell M., Sandercock D.. 1995. Creatine kinase isoenzyme profiles in the plasma of the domestic fowl (Gallus domesticus): effects of acute heat stress. Res. Vet. Sci.  59: 30– 34. Google Scholar CrossRef Search ADS PubMed  Olivo R., Guarnieri P. D., Shimokomaki M.. 2001. Fatores que influenciam na cor de filés de peito de frango. Rev. Nac. Carne  25: 44– 49. Osweiler G. D., Jagannatha S., Trampel D. W., Imerman P. M., Ensley S. M., Yoon I., Moore D. T.. 2010. Evaluation of XPC and prototypes on aflatoxin-challenged broilers. Poult. Sci.  89: 1887– 1893. Google Scholar CrossRef Search ADS PubMed  Pelicano E., Souza P., Souza H., Oba A., Boiago M., Zeola N., Scatolini A., Bertanha V., Lima T.. 2005. Carcass and cut yields and meat qualitative traits of broilers fed diets containing probiotics and prebiotics. Rev. Bras. Cienc. Avic.  7: 169– 175. Google Scholar CrossRef Search ADS   Pikul J., Leszczynski D. E., Kummerow F. A.. 1989. Evaluation of three modified tba methods for measuring lipid oxidation in chicken meat. J. Agric. Food Chem.  37: 1309– 1313. Google Scholar CrossRef Search ADS   Powell D. J., Mcfarland D. C., Cowieson A. J., Muir W. I., Velleman S. G.. 2014. The effect of nutritional status on myogenic gene expression of satellite cells derived from different muscle types1. Poult. Sci . 93: 2278– 2288. Google Scholar CrossRef Search ADS PubMed  Price P. T., Byrd J. A., Alvarado C. Z., Pavlidis H. O., McIntyre D. R., Archer G S. 2018. Utilizing original XPC™in feed to reduce stress susceptibility of broilers. Poult. Sci.  97: 855– 859. Google Scholar CrossRef Search ADS PubMed  Rostagno H. S., Gomes P. C., Euclides R. F.. 2011. Brazilian tables for poultry and swine—composition of feedstuffs and nutritional requirements. 3rd ed. Viçosa, MG, Brasil. 3: 105– 124. Sandercock D. A., Mitchell M. A.. 2004. The role of sodium ions in the pathogenesis of skeletal muscle damage in broiler chickens. Poult. Sci.  83: 701– 706. Google Scholar CrossRef Search ADS PubMed  Schneider C. D., de Oliveira A. R.. 2004. Radicais livres de oxigênio e exercício: mecanismos de formação e adaptação ao treinamento físico. Rev. Bras. Med. Esporte  10: 308– 313. Google Scholar CrossRef Search ADS   Sheard P. R., Hughes S. I., Jaspal M. H.. 2012. Colour, pH and weight changes of PSE, normal and DFD breast fillets from British broilers treated with a phosphate-free, low salt marinade. Br. Poult. Sci.  53: 57– 65. Google Scholar CrossRef Search ADS PubMed  Soares A. L., Marchi D. F., Matsushita M., Guarnieri P. D., Droval A. A., Ida E. I., Shimokomaki M.. 2009. Lipid oxidation and fatty acid profile related to broiler breast meat color abnormalities. Braz. Arch. Biol. Technol.  52: 1513– 1518. Google Scholar CrossRef Search ADS   Touqui L., Alaoui-El-Azher M.. 2001. Mammalian secreted phospholipases a2 and their pathophysiolo-gical significance in inflammatory diseases. Curr. Mol. Med . 1: 739– 754. Google Scholar CrossRef Search ADS PubMed  Zhang A. W., Lee B. D., Lee K. W., Song K. B., An G. H., Lee C. H.. 2005. Effects of graded levels of dietary Saccharomyces cerevisiae on growth performance and meat quality in broiler chickens. Asian Australas. J. Anim. Sci.  18: 699– 703. Google Scholar CrossRef Search ADS   © 2018 Poultry Science Association Inc. This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/about_us/legal/notices) http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Poultry Science Oxford University Press

Carcass characteristics and meat quality of broilers fed with different levels of Saccharomyces cerevisiae fermentation product

Loading next page...
 
/lp/ou_press/carcass-characteristics-and-meat-quality-of-broilers-fed-with-2UgZzLHskz
Publisher
Oxford University Press
Copyright
© 2018 Poultry Science Association Inc.
ISSN
0032-5791
eISSN
1525-3171
D.O.I.
10.3382/ps/pey174
Publisher site
See Article on Publisher Site

Abstract

ABSTRACT Fermented products and components of Saccharomyces cerevisiae have been widely used in animal nutrition to promote the development and quality of broilers. This study aims to evaluate different levels of inclusion (0, 250, 750, 1,500 g/t) of S. cerevisiae fermentation product (SCFP) in broiler feed to gauge its effect on carcass characteristics and cuts beyond the quality of breast meat. For analyses of carcass yield, cuts, and meat quality, 16 broilers per treatment were slaughtered. The meat quality analyses were performed 24 h after slaughter and evaluated color, pH, water holding capacity, cooking loss, and shear force. Lipid oxidation was determined in frozen breast samples stored at –20°C for 45 d. The results indicate that different levels of inclusion of SCFP provided no changes in carcass yield, color, water holding capacity, cooking loss, and shear force; however, inclusion of 1,500 g/t of SCFP increased leg yield and reduced pH. The inclusion of 750 g/t of SCFP decreased the lipid oxidation of breast meat (P < 0.05). This study concluded that inclusion of SCFP may improve leg yield and the lipid oxidation of breast meat. INTRODUCTION The Saccharomyces cerevisiae fermentation product (SCFP) has been widely used in animal nutrition worldwide. In broiler production, it has been shown to be an important tool for reducing coccidian and aflatoxin lesion (Osweiler et al., 2010; McIntyre et al., 2013). In addition, its use is subject to improvements on the performance and support of the immune system (Gao et al., 2008). The SCFP is derived from natural fermentation products and contains yeast cell wall (β-glucan and mannan oligosaccharides), vitamins, proteins, peptides, amino acids, nucleotides, organic acids, alcohols, and esters. SCFP is considered a multimodulator of the immune system with antioxidant and anti-inflammatory effects (Jensen et al., 2007). Because they show a very broad nutritional composition, the different compounds of SCFP can act in improving animal performance and, consequently, increase the yield of commercial cuts of broilers. In relation to the anti-inflammatory and antioxidant effects, a study carried out by Jensen et al. (2007) observed that after intake of SCFP in humans, erythrocytes and neutrophils demonstrated inhibition of the formation of reactive oxygen species. One of the ways to form free radicals involves biochemical cascade reactions of arachidonic acid, which is released through activation of phospholipase A2. These free radicals increase lipid oxidation in chicken; this problem is a major cause of loss of meat quality after microbial spoilage as demonstrated by Soares et al. (2009). The aim of this study was to evaluate the effect of different levels of inclusion (0, 250, 750, and 1,500 g/t) of SCFP on carcass characteristics, cuts, and meat quality of broiler chickens. MATERIALS AND METHODS The experimental procedures that are described in this study were approved by the Animal Ethics Committee of Universidade Estadual de Londrina. Birds and Treatments The broilers were fed during 42 d of life with a ration that met the minimum requirements recommended by Rostagno et al. (2011), with meals made with corn and soybean (Table 1). The experimental treatments consisted of providing different levels (0, 250, 750, and 1,500 g/t) of SCFP (Diamond V Original XPC, Cedar Rapids, IA). Broiler males (n = 64) of Cobb 500 were utilized, with 2 broilers per repetition to total 16 broilers/treatment. These broilers represented the average of weight of each experimental plot and were slaughtered at 43 d old to analyze carcass yield, cuts, and meat quality. Table 1. Percentage composition and calculated of experimental diets for broilers. Ingredients (%)  Pre-initial 1 to 7 d  Initial 8 to 21 d  Growth 22 to 35 d  Final 36 to 42 d  Corn  58.0  62.3  63.5  66.8  Soybean meal 46%  37.0  32.0  30.0  26.6  Soybean oil  0.0  0.7  1.5  1.6  Premix  5.0  5.0  5.0  5.0  Total  100.0  100.0  100.0  100.0  Nutritional levels          Metabolic energy (kcal/kg)  2950  3034  3103  3146  Crude protein (%)  22.11  20.03  19.11  17.77  Calcium (%)  1.12  0.99  0.94  0.94  Available phosphorus (%)  0.46  0.42  0.40  0.38  Digestible lysin. (%)  1.31  1.15  1.06  0.99  Digestible methionine (%)  0.63  0.53  0.49  0.40  Digestible Met+Cist. (%)  0.94  0.82  0.77  0.67  Digestible threonine (%)  0.85  0.75  0.68  0.64  Sodium (%)  0.24  0.22  0.18  0.18  Ingredients (%)  Pre-initial 1 to 7 d  Initial 8 to 21 d  Growth 22 to 35 d  Final 36 to 42 d  Corn  58.0  62.3  63.5  66.8  Soybean meal 46%  37.0  32.0  30.0  26.6  Soybean oil  0.0  0.7  1.5  1.6  Premix  5.0  5.0  5.0  5.0  Total  100.0  100.0  100.0  100.0  Nutritional levels          Metabolic energy (kcal/kg)  2950  3034  3103  3146  Crude protein (%)  22.11  20.03  19.11  17.77  Calcium (%)  1.12  0.99  0.94  0.94  Available phosphorus (%)  0.46  0.42  0.40  0.38  Digestible lysin. (%)  1.31  1.15  1.06  0.99  Digestible methionine (%)  0.63  0.53  0.49  0.40  Digestible Met+Cist. (%)  0.94  0.82  0.77  0.67  Digestible threonine (%)  0.85  0.75  0.68  0.64  Sodium (%)  0.24  0.22  0.18  0.18  Pre-initial: Calcium 150 g; phosphorus 32 g; lysin 3,275 g; methionine 6,094 g; threonine 1,960 g; vitamin A 140,000 IU; vitamin D3 40,000 IU; vitamin E 220 IU; vitamin K3 2,622 mg, vitamin B1 3,920 mg; vitamin B2 96 mg; vitamin B6 3,920 mg; vitamin B 12,200 mcg; niacin 70,460 mg; pantothenic acid 23,520 mg; folic acid 1,960 mg; biotin 0.80 mg; vitamin B8 5,928 mg; sodium 44 g; manganese 1,200 mg; zinc 1,000 mg; iron 800 mg; copper 160 mg; iodine 1,868 mg; selenium 9 mg; Initial: Calcium 150 g; phosphorus 27 g; lysin 2,560 g; methionine 4,150 g; threonine 1,176 g; vitamin A 140,000 IU; vitamin D3 40,000 IU; vitamin E 220 IU; vitamin K3 2,622 mg; vitamin B1 3,920 mg; vitamin B2 96 mg; vitamin B6 3,920 mg; vitamin B12 200 mcg; niacin 70,460 mg; pantothenic acid 23,520 mg; folic acid 1,960 mg; biotin 0.80 mg; vitamin B8 5,928 mg; sodium 40 g; manganese 1,200 mg; zinc 1,000 mg; iron 800 mg; copper 160 mg; iodine 1,844 mg; selenium 9 mg; Growth: Calcium 100 g; phosphorus 24 g; lysin 16 g; methionine 39 g; threonine 3,920 mg; vitamin A 110,000 IU; vitamin D3 24,000 IU; vitamin E 200 IU; vitamin K3 24 mg; vitamin B1 24 mg; vitamin B2 80 mg; vitamin B6 38 mg; vitamin B12 160 mcg; niacin 560 mg; pantothenic acid 180 mg; folic acid 12 mg; vitamin B8 5,200 mg; sodium 31 g; manganese 1,200 mg; zinc 1,000 mg; iron 800 mg; copper 160 mg; iodine 1,791 mg; selenium 5 mg; Final: Calcium 100 g; phosphorus 21 g; lysin 1,760 g; methionine 2,380 g; threonine 3,920 mg; vitamin A 110,000 IU; vitamin D3 10,000 IU; vitamin E 110 IU; vitamin K3 11 mg; vitamin B2 40 mg; vitamin B12 100 mcg; niacin 400 mg; pantothenic acid 130 mg; vitamin B8 2,183 mg; sodium 32 g; manganese 1,200 mg; zinc 1,000 mg; iron 800 mg; copper 160 mg; iodine 1,795 mg; selenium 5 mg. View Large Table 1. Percentage composition and calculated of experimental diets for broilers. Ingredients (%)  Pre-initial 1 to 7 d  Initial 8 to 21 d  Growth 22 to 35 d  Final 36 to 42 d  Corn  58.0  62.3  63.5  66.8  Soybean meal 46%  37.0  32.0  30.0  26.6  Soybean oil  0.0  0.7  1.5  1.6  Premix  5.0  5.0  5.0  5.0  Total  100.0  100.0  100.0  100.0  Nutritional levels          Metabolic energy (kcal/kg)  2950  3034  3103  3146  Crude protein (%)  22.11  20.03  19.11  17.77  Calcium (%)  1.12  0.99  0.94  0.94  Available phosphorus (%)  0.46  0.42  0.40  0.38  Digestible lysin. (%)  1.31  1.15  1.06  0.99  Digestible methionine (%)  0.63  0.53  0.49  0.40  Digestible Met+Cist. (%)  0.94  0.82  0.77  0.67  Digestible threonine (%)  0.85  0.75  0.68  0.64  Sodium (%)  0.24  0.22  0.18  0.18  Ingredients (%)  Pre-initial 1 to 7 d  Initial 8 to 21 d  Growth 22 to 35 d  Final 36 to 42 d  Corn  58.0  62.3  63.5  66.8  Soybean meal 46%  37.0  32.0  30.0  26.6  Soybean oil  0.0  0.7  1.5  1.6  Premix  5.0  5.0  5.0  5.0  Total  100.0  100.0  100.0  100.0  Nutritional levels          Metabolic energy (kcal/kg)  2950  3034  3103  3146  Crude protein (%)  22.11  20.03  19.11  17.77  Calcium (%)  1.12  0.99  0.94  0.94  Available phosphorus (%)  0.46  0.42  0.40  0.38  Digestible lysin. (%)  1.31  1.15  1.06  0.99  Digestible methionine (%)  0.63  0.53  0.49  0.40  Digestible Met+Cist. (%)  0.94  0.82  0.77  0.67  Digestible threonine (%)  0.85  0.75  0.68  0.64  Sodium (%)  0.24  0.22  0.18  0.18  Pre-initial: Calcium 150 g; phosphorus 32 g; lysin 3,275 g; methionine 6,094 g; threonine 1,960 g; vitamin A 140,000 IU; vitamin D3 40,000 IU; vitamin E 220 IU; vitamin K3 2,622 mg, vitamin B1 3,920 mg; vitamin B2 96 mg; vitamin B6 3,920 mg; vitamin B 12,200 mcg; niacin 70,460 mg; pantothenic acid 23,520 mg; folic acid 1,960 mg; biotin 0.80 mg; vitamin B8 5,928 mg; sodium 44 g; manganese 1,200 mg; zinc 1,000 mg; iron 800 mg; copper 160 mg; iodine 1,868 mg; selenium 9 mg; Initial: Calcium 150 g; phosphorus 27 g; lysin 2,560 g; methionine 4,150 g; threonine 1,176 g; vitamin A 140,000 IU; vitamin D3 40,000 IU; vitamin E 220 IU; vitamin K3 2,622 mg; vitamin B1 3,920 mg; vitamin B2 96 mg; vitamin B6 3,920 mg; vitamin B12 200 mcg; niacin 70,460 mg; pantothenic acid 23,520 mg; folic acid 1,960 mg; biotin 0.80 mg; vitamin B8 5,928 mg; sodium 40 g; manganese 1,200 mg; zinc 1,000 mg; iron 800 mg; copper 160 mg; iodine 1,844 mg; selenium 9 mg; Growth: Calcium 100 g; phosphorus 24 g; lysin 16 g; methionine 39 g; threonine 3,920 mg; vitamin A 110,000 IU; vitamin D3 24,000 IU; vitamin E 200 IU; vitamin K3 24 mg; vitamin B1 24 mg; vitamin B2 80 mg; vitamin B6 38 mg; vitamin B12 160 mcg; niacin 560 mg; pantothenic acid 180 mg; folic acid 12 mg; vitamin B8 5,200 mg; sodium 31 g; manganese 1,200 mg; zinc 1,000 mg; iron 800 mg; copper 160 mg; iodine 1,791 mg; selenium 5 mg; Final: Calcium 100 g; phosphorus 21 g; lysin 1,760 g; methionine 2,380 g; threonine 3,920 mg; vitamin A 110,000 IU; vitamin D3 10,000 IU; vitamin E 110 IU; vitamin K3 11 mg; vitamin B2 40 mg; vitamin B12 100 mcg; niacin 400 mg; pantothenic acid 130 mg; vitamin B8 2,183 mg; sodium 32 g; manganese 1,200 mg; zinc 1,000 mg; iron 800 mg; copper 160 mg; iodine 1,795 mg; selenium 5 mg. View Large Carcass Characteristics For evaluation of carcass yield, cuts, and quality of meat, selected broilers were subjected to pre-slaughter fasting for 8 h. Then, they were subjected to heat stress in a thermal chamber at 36°C for 30 min. Immediately afterward, the broilers were weighed to determine the weight of slaughter, which was used for determining the carcass and cut yield. Birds were electrically stunned in water bath equipment (Model FX 2.0, Fluxo, Chapecó, Brazil), where they were exposed for 10 s to an electrical current (800-Hz frequency and 42-V voltage) and then bled, scalded, plucked, eviscerated, and cut up to determine the carcass and parts yields. Carcass yield was calculated as carcass weight without the head, feet, and neck and was determined immediately after evisceration relative to live weight. Breast, legs (thigh and drumstick), back, and wing yields were calculated as their weight relative to eviscerated carcass weight. Meat Quality After the determination of the carcass and yield cuts, breast (pectoralis major) meat samples were removed from carcasses approximately 20 min after slaughter, placed in labeled plastic bags, sealed, chilled in an ice bath, and stored at 4°C for 24 h, after which they were analyzed for meat quality traits such as pH, color, water holding capacity (WHC), cooking loss (CL), and shear force. The pH was measured by inserting electrodes into the meat samples using a contact pH meter system (Model 205, Testo AG, Lenzkirch, Germany), as reported previously by Olivo et al. (2001). The color measurements were taken on the dorsal surface of the samples using a Minolta chromameter (Model CR10, Minolta, Osaka, Japan). The L*, a*, and b* measurements were evaluated according to the CIELAB system, where L* corresponds to lightness, a* to redness (between green and red), and b* to yellowness (between blue and yellow). Average L*, a*, and b* values were calculated from 3 readings in different positions. The WHC was determined according to the method described by Hamm (1960). Twenty-four hours post mortem, samples were collected from the cranial side of the breast fillets and cut into 2.0-g (±0.10) cubes. The samples were analyzed in duplicate. They were first carefully placed between 2 filter papers and then left under a 10-kg weight for 5 min. The samples were then weighed, and WHC was determined according the following equation:   \begin{equation*}{\rm{WHC}}\ \ \left( \% \right) = \ 100 - \ \left[ {\left( {\frac{{Wi - Wf}}{{Wi}}} \right)\rm{X}\ 100} \right]\end{equation*}where Wi and Wf are the initial and final sample weights, respectively. Cooking loss was determined according to the methodology proposed by Cason et al. (1997). Raw breast meat samples were weighed (±90 g), packaged, and steam-cooked in a water bath at 85°C for 30 min until an internal end-point temperature of 75 to 80°C was reached. Samples were then left to cool until room temperature was reached and were then weighed. Cooking loss was calculated as CL (%) = 100 × (1– cooked weight/fresh weight). Shear force was determined using the CT3 Texture Analyzer (Brookfield, Germany) coupled to a Warner–Bratzler probe. The cooked breast muscle samples used for the determination of CLs were tested. The samples were cut into 1.5-cm-wide and 1.0-cm-deep slices and then placed perpendicular to the Warner–Bratzler blade. The maximum force required to cut the slices was determined (kgf). Lipid oxidation was determined in samples of breasts stored at –20°C for 45 d, as described by Pikul et al. (1989). Statistical Analysis The data were submitted to analysis of variance, and the means were subsequently compared by Tukey's test at a 5% significance level. RESULTS AND DISCUSSION Carcass Yield According the results obtained about carcass weight (Table 2), the treatment without inclusion of SCFP showed more weight when compared treatments with 250 and 750 g/t of SCFP (P < 0.05), and no difference was find when the inclusion was 1,500 g/t of SCFP. Thereby, this study demonstrated that when we used the inclusion of 1,500 g/t of SCFP in the feed of broilers, there was an increase in leg yield (P < 0.05) but no changes in carcass and other cut yields (Table 2). The results are in agreement with results of the experiment conducted by Miazzo and Peralta (2005), who observed higher yields of leg and breast in addition to a reduction of abdominal fat in broilers fed 0.3% of yeast in the ration. Karaoglu and Durdag (2005) and Chumpawadee et al. (2008) found no effect of using S. cerevisiae on the carcass yield of broilers. However, different results were obtained by Fathi et al. (2012), who worked with different levels of S. cerevisae and observed an increased yield of breast when using 1.5 g/kg of the product in feed. In another study conducted by Kidd et al. (2013), when broiler breeders were fed with products based on S. cerevisiae, the progeny showed more breast yield when compared with the control group. The increase of cut yield may be related to a use of S. cerevisiae as a dietary tool that can provide a better absorption and digestibility of some nutrients such as minerals and vitamins. According to Powell et al. (2014), the nutritional regimen can stimulate the proliferation and differentiation of satellite cells and may increase some cut yields. Table 2. Carcass weight (CW), carcass yield (CY), breast yield (BY), back yield (BcY), wings yield (WY), and legs yield (LY) of broilers with 43 –da old, fed with different levels of Saccharomyces cerevisiae fermentation product (SCFP).   Analyzed variables  SCFP (g/t)  CW(g)  CY (%)  BY (%)  BcY (%)  WY (%)  LY (%)  0  2118a  73.26  40.64  19.63  10.27  29.45b  250  2050ab  73.23  39.44  19.29  10.44  30.82ab  750  2038b  73.23  39.80  19.45  10.28  30.46ab  1500  2090ab  73.03  39.77  19.17  10.32  30.73a  CV %  3,93  2.29  4.70  5.62  3.98  4.54  P value  0.026  0.976  0.323  0.657  0.604  0.026    Analyzed variables  SCFP (g/t)  CW(g)  CY (%)  BY (%)  BcY (%)  WY (%)  LY (%)  0  2118a  73.26  40.64  19.63  10.27  29.45b  250  2050ab  73.23  39.44  19.29  10.44  30.82ab  750  2038b  73.23  39.80  19.45  10.28  30.46ab  1500  2090ab  73.03  39.77  19.17  10.32  30.73a  CV %  3,93  2.29  4.70  5.62  3.98  4.54  P value  0.026  0.976  0.323  0.657  0.604  0.026  CV % = coefficient of variation, (P < 0.05). View Large Table 2. Carcass weight (CW), carcass yield (CY), breast yield (BY), back yield (BcY), wings yield (WY), and legs yield (LY) of broilers with 43 –da old, fed with different levels of Saccharomyces cerevisiae fermentation product (SCFP).   Analyzed variables  SCFP (g/t)  CW(g)  CY (%)  BY (%)  BcY (%)  WY (%)  LY (%)  0  2118a  73.26  40.64  19.63  10.27  29.45b  250  2050ab  73.23  39.44  19.29  10.44  30.82ab  750  2038b  73.23  39.80  19.45  10.28  30.46ab  1500  2090ab  73.03  39.77  19.17  10.32  30.73a  CV %  3,93  2.29  4.70  5.62  3.98  4.54  P value  0.026  0.976  0.323  0.657  0.604  0.026    Analyzed variables  SCFP (g/t)  CW(g)  CY (%)  BY (%)  BcY (%)  WY (%)  LY (%)  0  2118a  73.26  40.64  19.63  10.27  29.45b  250  2050ab  73.23  39.44  19.29  10.44  30.82ab  750  2038b  73.23  39.80  19.45  10.28  30.46ab  1500  2090ab  73.03  39.77  19.17  10.32  30.73a  CV %  3,93  2.29  4.70  5.62  3.98  4.54  P value  0.026  0.976  0.323  0.657  0.604  0.026  CV % = coefficient of variation, (P < 0.05). View Large Meat Quality The results of meat color (Table 3) show that different levels of SCFP inclusion in broiler feed did not change the brightness and intensity of red and yellow. The color is an important parameter of evaluation, because the consumer analyzes differences in color as a standard of the product. This change is associated with a loss of quality. The results of this study are in agreement with those of Pelicano et al. (2005), who found no differences in color standards of broiler breast samples with added diet products with components of S. cerevisiae as a prebiotic. Table 3. Results of luminosity (L*), intensity of red (a*) and yellow (b*), and pH of samples of breast chicken fed with different levels of inclusion of Saccharomyces cerevisiae fermentation product (SCFP).   Analyzed variables  SCFP (g/t)  L*  a*  b*  pH (24 h)  0  52.09  2.56  13.18  5.92a  250  52.40  2.62  13.00  5.86ab  750  53.43  2.48  13.70  5.90ab  1500  53.58  2.26  13.66  5.81b  CV%  5.03  45.70  10.71  1.88  P value  0.30  0.821  0.426  0.025    Analyzed variables  SCFP (g/t)  L*  a*  b*  pH (24 h)  0  52.09  2.56  13.18  5.92a  250  52.40  2.62  13.00  5.86ab  750  53.43  2.48  13.70  5.90ab  1500  53.58  2.26  13.66  5.81b  CV%  5.03  45.70  10.71  1.88  P value  0.30  0.821  0.426  0.025  CV % = coefficient of variation (P < 0.05). View Large Table 3. Results of luminosity (L*), intensity of red (a*) and yellow (b*), and pH of samples of breast chicken fed with different levels of inclusion of Saccharomyces cerevisiae fermentation product (SCFP).   Analyzed variables  SCFP (g/t)  L*  a*  b*  pH (24 h)  0  52.09  2.56  13.18  5.92a  250  52.40  2.62  13.00  5.86ab  750  53.43  2.48  13.70  5.90ab  1500  53.58  2.26  13.66  5.81b  CV%  5.03  45.70  10.71  1.88  P value  0.30  0.821  0.426  0.025    Analyzed variables  SCFP (g/t)  L*  a*  b*  pH (24 h)  0  52.09  2.56  13.18  5.92a  250  52.40  2.62  13.00  5.86ab  750  53.43  2.48  13.70  5.90ab  1500  53.58  2.26  13.66  5.81b  CV%  5.03  45.70  10.71  1.88  P value  0.30  0.821  0.426  0.025  CV % = coefficient of variation (P < 0.05). View Large The inclusion of different levels of SCFP changed the pH of the breast (P < 0.05), as shown in Table 3. When we provided 1,500 g/t of SCPF, there was a pH reduction (P < 0.05). The reduction of pH is related to the concentration of glycogen. When the anaerobic pathway is used post mortem, energy and lactic acid are generated, thereby reducing pH. Despite differences in pH, the values of the samples are considered normal for chicken breast (Sheard et al., 2012), which explains the lack of effect on parameters such as WHC, CL, and shear force (Table 4). The reduction in pH may promote denaturation of myofibrillar proteins, resulting in a loss of functional capacity of these proteins to retain water in the cell, thereby creating economic losses by dropping carcass and cut yield in the industry. Table 4. Results of water holding capacity (WHC); cooking loss (PPC), shear force (SF), and lipid oxidation (TBARS) of broiler chickens fed with different levels of Saccharomyces cerevisiae fermentation product (SCFP).   Analyzed variables  SCFP (g/t)  WHC (%)  CL (%)  SF (kgf)  TBARS (mg/kg)  0  71.45  25.04  3.01  0.575a  250  69.81  26.88  3.44  0.451ab  750  69.91  23.41  2.92  0.451b  1500  68.90  24.78  3.45  0.533ab  CV %  4.98  15.23  33.13  20.49  P value  0.232  0.095  0.355  0.003    Analyzed variables  SCFP (g/t)  WHC (%)  CL (%)  SF (kgf)  TBARS (mg/kg)  0  71.45  25.04  3.01  0.575a  250  69.81  26.88  3.44  0.451ab  750  69.91  23.41  2.92  0.451b  1500  68.90  24.78  3.45  0.533ab  CV %  4.98  15.23  33.13  20.49  P value  0.232  0.095  0.355  0.003  CV % = coefficient of variation (P < 0.05). View Large Table 4. Results of water holding capacity (WHC); cooking loss (PPC), shear force (SF), and lipid oxidation (TBARS) of broiler chickens fed with different levels of Saccharomyces cerevisiae fermentation product (SCFP).   Analyzed variables  SCFP (g/t)  WHC (%)  CL (%)  SF (kgf)  TBARS (mg/kg)  0  71.45  25.04  3.01  0.575a  250  69.81  26.88  3.44  0.451ab  750  69.91  23.41  2.92  0.451b  1500  68.90  24.78  3.45  0.533ab  CV %  4.98  15.23  33.13  20.49  P value  0.232  0.095  0.355  0.003    Analyzed variables  SCFP (g/t)  WHC (%)  CL (%)  SF (kgf)  TBARS (mg/kg)  0  71.45  25.04  3.01  0.575a  250  69.81  26.88  3.44  0.451ab  750  69.91  23.41  2.92  0.451b  1500  68.90  24.78  3.45  0.533ab  CV %  4.98  15.23  33.13  20.49  P value  0.232  0.095  0.355  0.003  CV % = coefficient of variation (P < 0.05). View Large Table 4 shows that other variables, such as WHC, CL, and shear force, were not affected by the different levels of SCFP inclusion in the broiler feed. These results are similar to studies conducted by Pelicano et al. (2005), who found no differences in the results of CL and texture when the broilers were fed with components of yeast product. In this study, the inclusion of SCFP reduced (P < 0.05) lipid oxidation (Table 4), which is a factor of great relevance to the consumer's decision in purchasing the product, because oxidation indicates quality as a change in smell or reduction in shelf life. The reduction of this change in meat quality observed in this study may be related to anti-inflammatory and antioxidant effects of the components present in the product, such as phenolic compounds and vitamin E. The broiler chickens were submitted to heat stress at a temperature of 36°C for 30 min during the pre-slaughter period. This procedure was performed with the aim of forcing the development of myopathy in meat due to increased creatinine kinase, which is related to muscle damage (Mitchell and Sandercock, 1995). According to Han et al. (2010), heat stress leads to alteration of homeostasis, increasing the rate of breathing, which can lead to increased production of free radicals that damages the cell phospholipid membranes and favors the oxidation of meat. Another modification related to heat stress is the change in the pump activity of Na+/K+ ATPase (DuBourdieu and Shier, 1992). Blaustein et al. (1999) suggested that the mechanism of Na+ can mediate the uptake of Ca++ from the extracellular environment to the intracellular environment by changing Na+/K+ to Na+/Ca++. This mechanism was confirmed by Sandercock and Mitchell (2004), who used an ionophore agent (monensin) and ouabain in the diet of broiler chickens and found an increased concentration of intracellular Ca++, thus leading to injury and increased release of the enzyme creatinine kinase. The breakdown of homeostasis generated by stress, coupled with an increase in intracellular calcium concentration, can lead to possible injury in the phospholipid membrane. Consequently, there is an increase in phospholipase A2 activity that stimulates the synthesis of arachidonic acid, which is a precursor of cyclooxygenase and lipoxygenase. These changes lead to the formation of eicosanoids, such as prostaglandins and leukotrienes, which are important inflammatory mediators (Touqui and Alaoui-El-Azher, 2001) and free radicals (Soares et al., 2009). The formation of free radicals or reactive oxygen species can occur through the action of the enzyme cyclooxygenase on arachidonic acid, which is released from phospholipase A2 activity of the hydroxyl radical and is the most reactive intermediate for the formation of free radicals. This is one of the most important components for the lipid oxidation of cell membranes (Schneider and de Oliveira, 2004). This oxidation is increased when the broilers are subjected to heat stress (Altan et al., 2000; Lin et al., 2000). Thus, the use of SCFP may have inhibited lipid oxidation of meat of chickens by the production of constituents (flavonoids and vitamin E) that exhibit anti-inflammatory and antioxidant activity. According to Manthey et al. (2001), flavonoids have an anti-inflammatory effect and the ability to inhibit the activity of phospholipase A2, and may improve the resistance to heat stress as reported by Price et al. (2018). Vitamin E (α-tocopherol), present in the SCFP, acts as an antioxidant by reducing the lipid oxidation of meat. Avila-Ramos et al. (2013) found that working with levels of 10 and 100 ppm of vitamin E decreased lipid oxidation in samples of breast meat that were 45 d old. Aristides et al. (2012) used products based on SCFP in broilers and observed a reduction in lipid oxidation. The same results were observed by Zhang et al. (2005), where the addition of 0.3, 1, and 3% of SCFP reduced lipid oxidation in chicken breast compared to the control treatment. CONCLUSIONS In summary, the present study showed that the inclusion of 1,500 g/t of SCFP may increase the leg yield and reduce the pH of meat in values that are considered normal. Additionally, the study demonstrated that the inclusion of 750 g/t of SCFP may be an important tool to reduce the lipid oxidation of meat and increase the shelf life of the product. ACKNOWLEDGMENTS The authors express their gratitude to the Department of Animal Science of Universidade Estadual de Londrina, CNPq, and the companies Tectron Nutrição Animal and Diamond V Mills. REFERENCES Altan O., Altan A., Oguz I., Pabuccuoglu A., Konyalioglu S.. 2000. Effects of heat stress on growth, some blood variables and lipid oxidation in broilers exposed to high temperature at an early age. Br. Poult. Sci.  41: 489– 493. Google Scholar CrossRef Search ADS PubMed  Aristides L. G. A., Paiao F. G., Murate L. S., Oba A., Shimokomaki M.. 2012. The effects of biotic additives on growth performance and meat qualities in broiler chickens. Int. J. Poult. Sci.  11: 599– 604. Google Scholar CrossRef Search ADS   Avila-Ramos F., Pro-Martinez A., Sosa-Montes E., Cuca-Garcia J. M., Becerril-Perez C., Figueroa-Velasco J. L., Ruiz-Feria C. A., Hernandez-Cazares A. S., Narciso-Gaytan C.. 2013. Dietary supplemented and meat-added antioxidants effect on the lipid oxidative stability of refrigerated and frozen cooked chicken meat. Poult. Sci.  92: 243– 249. Google Scholar CrossRef Search ADS PubMed  Blaustein M. P., Blaustein M. P., Lederer W. J., Lederer W. J.. 1999. Sodium/calcium exchange: its physiological implications. Physiol. Rev.  79: 763– 854. Google Scholar CrossRef Search ADS PubMed  Cason J. A., Lyon C. E., Papa C. M.. 1997. Effect of muscle opposition during rigor on development of broiler breast meat tenderness. Poult. Sci.  76: 785– 787. Google Scholar CrossRef Search ADS PubMed  Chumpawadee S., Chinrasri O., Somchan T., Ngamluan S., Soychuta S.. 2008. Effect of dietary inclusion of cassava yeast as probiotic source on growth performance, small intestine (Ileum) morphology and carcass characteristic in broilers. Int. J. Poult. Sci.  7: 246– 250. Google Scholar CrossRef Search ADS   DuBourdieu D. J., Shier W. T.. 1992. Sodium- and calcium-dependent steps in the mechanism of neonatal rat cardiac myocyte killing by ionophores. Toxicol. Appl. Pharmacol.  116: 47– 56. Google Scholar CrossRef Search ADS PubMed  Fathi M. M., Al-Mansour S., Al-Homidan A., Al-Khalaf A., Al-Damegh M.. 2012. Effect of yeast culture supplementation on carcass yield and humoral immune response of broiler chicks. Vet. World  5: 651– 657. Google Scholar CrossRef Search ADS   Gao J., Zhang H. J., Yu S. H., Wu S. G., Yoon I., Quigley J., Gao Y. P., Qi G. H.. 2008. Effects of yeast culture in broiler diets on performance and immunomodulatory functions. Poult. Sci.  87: 1377– 1384. Google Scholar CrossRef Search ADS PubMed  Hamm R. 1960. Biochemistry of meat hydration. Adv. Food Res.  10: 355– 463. Google Scholar CrossRef Search ADS PubMed  Han A. Y., Zhang M. H., Zuo X. L., Zheng S. S., Zhao C. F., Feng J. H., Cheng C.. 2010. Effect of acute heat stress on calcium concentration, proliferation, cell cycle, and interleukin-2 production in splenic lymphocytes from broiler chickens. Poult. Sci.  89: 2063– 2070. Google Scholar CrossRef Search ADS PubMed  Jensen G. S., Hart A. N., Schauss A. G.. 2007. An antiinflammatory immunogen from yeast culture induces activation and alters chemokine receptor expression on human natural killer cells and B lymphocytes in vitro. Nutr. Res.  27: 327– 335. Google Scholar CrossRef Search ADS   Karaoglu M., Durdag H.. 2005. The influence of dietary probiotic (Saccharomyces cerevisiae) supplementation and different slaughter age on the performance, slaughter and carcass properties of broilers. Int. J. Poult. Sci.  4: 309– 316. Google Scholar CrossRef Search ADS   Kidd M. T., Araujo L., Araujo C., McDaniel C. D., McIntyre D.. 2013. A study assessing hen and progeny performance through dam diet fortification with a Saccharomyces cerevisiae fermentation product. J. Appl. Poult. Res.  22: 872– 877. Google Scholar CrossRef Search ADS   Lin H., Du R., Zhang Z. Y.. 2000. Peroxide status in tissues of heat-stressed broilers. Asian Australas. J. Anim. Sci.  13: 1373– 1376. Google Scholar CrossRef Search ADS   Manthey J. A., Guthrie N., Grohmann K.. 2001. Biological properties of citrus flavonoids pertaining to cancer and inflammation. Curr. Med. Chem.  8: 135– 153. Google Scholar CrossRef Search ADS PubMed  McIntyre D., Broomhead J. N., Mathis G. F., Lumpkins B.. 2013. Effects of feeding original XPC and salinomycin during a coccidia challenge in broilers. Poult. Sci.  92( Suppl.1): 59– 60. Miazzo R. D., Peralta M. F.. 2005. Performance Productiva y Calidad de la canal en Broilers que recibieron Levadura de Cerveza (S. cerevisiae) (productive performance and carcass quality in broilers fed yeast (S. cerevisiae)). Rev. Electron. Vet . VI: 1– 9. Mitchell M., Sandercock D.. 1995. Creatine kinase isoenzyme profiles in the plasma of the domestic fowl (Gallus domesticus): effects of acute heat stress. Res. Vet. Sci.  59: 30– 34. Google Scholar CrossRef Search ADS PubMed  Olivo R., Guarnieri P. D., Shimokomaki M.. 2001. Fatores que influenciam na cor de filés de peito de frango. Rev. Nac. Carne  25: 44– 49. Osweiler G. D., Jagannatha S., Trampel D. W., Imerman P. M., Ensley S. M., Yoon I., Moore D. T.. 2010. Evaluation of XPC and prototypes on aflatoxin-challenged broilers. Poult. Sci.  89: 1887– 1893. Google Scholar CrossRef Search ADS PubMed  Pelicano E., Souza P., Souza H., Oba A., Boiago M., Zeola N., Scatolini A., Bertanha V., Lima T.. 2005. Carcass and cut yields and meat qualitative traits of broilers fed diets containing probiotics and prebiotics. Rev. Bras. Cienc. Avic.  7: 169– 175. Google Scholar CrossRef Search ADS   Pikul J., Leszczynski D. E., Kummerow F. A.. 1989. Evaluation of three modified tba methods for measuring lipid oxidation in chicken meat. J. Agric. Food Chem.  37: 1309– 1313. Google Scholar CrossRef Search ADS   Powell D. J., Mcfarland D. C., Cowieson A. J., Muir W. I., Velleman S. G.. 2014. The effect of nutritional status on myogenic gene expression of satellite cells derived from different muscle types1. Poult. Sci . 93: 2278– 2288. Google Scholar CrossRef Search ADS PubMed  Price P. T., Byrd J. A., Alvarado C. Z., Pavlidis H. O., McIntyre D. R., Archer G S. 2018. Utilizing original XPC™in feed to reduce stress susceptibility of broilers. Poult. Sci.  97: 855– 859. Google Scholar CrossRef Search ADS PubMed  Rostagno H. S., Gomes P. C., Euclides R. F.. 2011. Brazilian tables for poultry and swine—composition of feedstuffs and nutritional requirements. 3rd ed. Viçosa, MG, Brasil. 3: 105– 124. Sandercock D. A., Mitchell M. A.. 2004. The role of sodium ions in the pathogenesis of skeletal muscle damage in broiler chickens. Poult. Sci.  83: 701– 706. Google Scholar CrossRef Search ADS PubMed  Schneider C. D., de Oliveira A. R.. 2004. Radicais livres de oxigênio e exercício: mecanismos de formação e adaptação ao treinamento físico. Rev. Bras. Med. Esporte  10: 308– 313. Google Scholar CrossRef Search ADS   Sheard P. R., Hughes S. I., Jaspal M. H.. 2012. Colour, pH and weight changes of PSE, normal and DFD breast fillets from British broilers treated with a phosphate-free, low salt marinade. Br. Poult. Sci.  53: 57– 65. Google Scholar CrossRef Search ADS PubMed  Soares A. L., Marchi D. F., Matsushita M., Guarnieri P. D., Droval A. A., Ida E. I., Shimokomaki M.. 2009. Lipid oxidation and fatty acid profile related to broiler breast meat color abnormalities. Braz. Arch. Biol. Technol.  52: 1513– 1518. Google Scholar CrossRef Search ADS   Touqui L., Alaoui-El-Azher M.. 2001. Mammalian secreted phospholipases a2 and their pathophysiolo-gical significance in inflammatory diseases. Curr. Mol. Med . 1: 739– 754. Google Scholar CrossRef Search ADS PubMed  Zhang A. W., Lee B. D., Lee K. W., Song K. B., An G. H., Lee C. H.. 2005. Effects of graded levels of dietary Saccharomyces cerevisiae on growth performance and meat quality in broiler chickens. Asian Australas. J. Anim. Sci.  18: 699– 703. Google Scholar CrossRef Search ADS   © 2018 Poultry Science Association Inc. This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/about_us/legal/notices)

Journal

Poultry ScienceOxford University Press

Published: May 16, 2018

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off