Canonicity results for mu-calculi: an algorithmic approach

Canonicity results for mu-calculi: an algorithmic approach AbstractWe investigate the canonicity of inequalities of the intuitionistic mu-calculus. The notion of canonicity in the presence of fixed point operators is not entirely straightforward. In the algebraic setting of canonical extensions we examine both the usual notion of canonicity and what we will call tame canonicity. This latter concept has previously been investigated for the classical mu-calculus by Bezhanishvili and Hodkinson. Our approach is in the spirit of Sahlqvist theory. That is, we identify syntactically-defined classes of inequalities, namely the restricted inductive and tame inductive inequalities, which are, respectively, canonical or tame canonical. Our approach is to use an algorithm which processes inequalities with the aim of eliminating propositional variables. The algorithm we introduce is closely related to the algorithms ALBA and mu-ALBA studied by Conradie $et\,al$. It is based on a calculus of rewrite rules, the soundness of which rests upon the way in which algebras embed into their canonical extensions and the order-theoretic properties of the latter. We show that the algorithm succeeds on every restricted inductive inequality by means of a so-called proper run, and that this is sufficient to guarantee their canonicity. Likewise, we are able to show that the algorithm succeeds on every tame inductive inequality by means of a so-called tame run. In turn, this guarantees their tame canonicity. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Logic and Computation Oxford University Press

Canonicity results for mu-calculi: an algorithmic approach

Loading next page...
 
/lp/ou_press/canonicity-results-for-mu-calculi-an-algorithmic-approach-rzT3BO0KdU
Publisher
Oxford University Press
Copyright
© The Author, 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
ISSN
0955-792X
eISSN
1465-363X
D.O.I.
10.1093/logcom/exx011
Publisher site
See Article on Publisher Site

Abstract

AbstractWe investigate the canonicity of inequalities of the intuitionistic mu-calculus. The notion of canonicity in the presence of fixed point operators is not entirely straightforward. In the algebraic setting of canonical extensions we examine both the usual notion of canonicity and what we will call tame canonicity. This latter concept has previously been investigated for the classical mu-calculus by Bezhanishvili and Hodkinson. Our approach is in the spirit of Sahlqvist theory. That is, we identify syntactically-defined classes of inequalities, namely the restricted inductive and tame inductive inequalities, which are, respectively, canonical or tame canonical. Our approach is to use an algorithm which processes inequalities with the aim of eliminating propositional variables. The algorithm we introduce is closely related to the algorithms ALBA and mu-ALBA studied by Conradie $et\,al$. It is based on a calculus of rewrite rules, the soundness of which rests upon the way in which algebras embed into their canonical extensions and the order-theoretic properties of the latter. We show that the algorithm succeeds on every restricted inductive inequality by means of a so-called proper run, and that this is sufficient to guarantee their canonicity. Likewise, we are able to show that the algorithm succeeds on every tame inductive inequality by means of a so-called tame run. In turn, this guarantees their tame canonicity.

Journal

Journal of Logic and ComputationOxford University Press

Published: Apr 1, 2017

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off