Black hole spin from wobbling and rotation of the M87 jet and a sign of a magnetically arrested disc

Black hole spin from wobbling and rotation of the M87 jet and a sign of a magnetically arrested disc Abstract New long-term Very Long Baseline Array observations of the well-known jet in the M87 radio galaxy at 43 GHz show that the jet experiences a sideways shift with an approximately 8–10 yr quasi-periodicity. Such jet wobbling can be indicative of a relativistic Lense-Thirring precession resulting from a tilted accretion disc. The wobbling period together with up-to-date kinematic data on jet rotation opens up the possibility for estimating angular momentum of the central supermassive black hole. In the case of a test-particle precession, the specific angular momentum is J/Mc = (2.7 ± 1.5) × 1014 cm, implying moderate dimensionless spin parameters a = 0.5 ± 0.3 and 0.31 ± 0.17 for controversial gas-dynamic and stellar-dynamic black hole masses. However, in the case of a solid-body-like precession, the spin parameter is much smaller for both masses, 0.15 ± 0.05. Rejecting this value on the basis of other independent spin estimations requires the existence of a magnetically arrested disc in M87. galaxies: individual: M87, galaxies: jets, black hole physics, accretion, accretion discs © 2018 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/about_us/legal/notices) http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Monthly Notices of the Royal Astronomical Society: Letters Oxford University Press

Black hole spin from wobbling and rotation of the M87 jet and a sign of a magnetically arrested disc

Loading next page...
 
/lp/ou_press/black-hole-spin-from-wobbling-and-rotation-of-the-m87-jet-and-a-sign-lSsoypxo4p
Publisher
journal_eissn:11745-3933
Copyright
© 2018 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society
ISSN
1745-3925
eISSN
1745-3933
D.O.I.
10.1093/mnrasl/sly097
Publisher site
See Article on Publisher Site

Abstract

Abstract New long-term Very Long Baseline Array observations of the well-known jet in the M87 radio galaxy at 43 GHz show that the jet experiences a sideways shift with an approximately 8–10 yr quasi-periodicity. Such jet wobbling can be indicative of a relativistic Lense-Thirring precession resulting from a tilted accretion disc. The wobbling period together with up-to-date kinematic data on jet rotation opens up the possibility for estimating angular momentum of the central supermassive black hole. In the case of a test-particle precession, the specific angular momentum is J/Mc = (2.7 ± 1.5) × 1014 cm, implying moderate dimensionless spin parameters a = 0.5 ± 0.3 and 0.31 ± 0.17 for controversial gas-dynamic and stellar-dynamic black hole masses. However, in the case of a solid-body-like precession, the spin parameter is much smaller for both masses, 0.15 ± 0.05. Rejecting this value on the basis of other independent spin estimations requires the existence of a magnetically arrested disc in M87. galaxies: individual: M87, galaxies: jets, black hole physics, accretion, accretion discs © 2018 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/about_us/legal/notices)

Journal

Monthly Notices of the Royal Astronomical Society: LettersOxford University Press

Published: Jun 2, 2018

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off