A Novel Mouse Model of Testicular Granulosa Cell Tumors

A Novel Mouse Model of Testicular Granulosa Cell Tumors Abstract STUDY QUESTION What is the role of dysregulated transforming growth factor beta (TGFB) signaling in the development of sex cord-stromal tumors in the testis? SUMMARY ANSWER Overactivation of TGFB signaling results in the development of testicular tumors resembling granulosa cell tumors (GrCTs). WHAT IS KNOWN ALREADY In an earlier study, we demonstrated that constitutively active TGFB receptor 1 (TGFBR1) in ovarian somatic cells promotes the development of ovarian GrCTs. However, the consequence of dysregulation of TGFB signaling in the pathobiology of the testis, remains poorly defined. STUDY DESIGN SIZE, DURATION To identify the impact of dysregulation of TGFB signaling on the testis, we generated mice with constitutive activation of TGFBR1 using anti-Mullerian hormone receptor type 2 (Amhr2)-Cre recombinase. The effect of constitutively active TGFBR1 on testis development and the timeline of testicular tumor formation were examined. We further investigated the molecular features of testicular tumors and determined the expression of beta-catenin (CTNNB1) known to be involved in testicular GrCT development. PARTICIPANTS/MATERIALS, SETTING, METHODS Male mice with constitutive activation of TGFBR1 were examined at various developmental stages (i.e., from 1 week up to 6 months) along with controls. Testis samples were collected and processed for histological and molecular analyses, including haematoxylin and eosin (H & E) staining, real-time PCR, immunohistochemistry, immunofluorescence, and western blotting. Immunostaining/immunoblotting and real-time PCR experiments were performed using at least three animals per genotype. Data are presented as mean ± SEM. Statistical significance was determined using unpaired two-tail t-test and reported when P value is less than 0.05. MAIN RESULTS AND THE ROLE OF CHANCE Mice harboring constitutively active TGFBR1 in the testes developed tumors resembling testicular GrCTs, a rare type of tumors in the testis. The formation of testicular tumors led to altered cell proliferation, loss of germ cells, and defective spermatogenesis. Immunohistochemically, these tumors were positive for inhibin alpha (INHA), forkhead box O1 (FOXO1), and more importantly, forkhead box L2 (FOXL2), a protein specifically expressed in the ovary and required for normal granulosa cell differentiation and function. Consistent with the immunohistochemical findings, FOXL2 proteins were only detectable in testes of TGFBR1-CAAcre mice but not those of controls by western blotting, suggesting potential alteration of Sertoli cell fate. To explore mechanisms underlying the tumor-promoting effect of TGFBR1 overactivation, we examined the expression of beta-catenin (CTNNB1). The results revealed increased expression of CTNNB1 in testicular tumors in TGFBR1-CAAcre mice. Collectively, this study uncovered tumorigenic function of enhanced TGFB signaling in the testis. LARGE SCALE DATA N/A. LIMITATIONS REASONS FOR CAUTION This study was performed using mice, and the direct relevance of the experimental paradigm and findings to human testicular GrCTs awaits further investigation. Of note, constitutive activation of TGFBR1 was employed to enhance TGFB/SMAD signaling activity and may not be interpreted as the genetic cause of the disease. WIDER IMPLICATIONS OF THE FINDINGS This mouse model may prove to be a useful addition to the mouse genetics toolkit for GrCT research. Our finding that dysregulation of TGFB signaling results in the development of testicular GrCTs supports a common origin between Sertoli cells and granulosa cells, and highlights the paramount importance of balanced TGFB signaling in reproduction and development. STUDY FUNDING/COMPETING INTEREST(S) This research was supported by the National Institutes of Health grant R03HD082416 from the Eunice Kennedy Shriver National Institute of Child Health & Human Development and the New Faculty Start-up Funds from Texas A&M University awarded to Q.L. The authors declare no competing interest. Testicular granulosa cell tumor, gonad, TGFBR1, SMAD2/3, Mouse model © The Author 2018. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/about_us/legal/notices) http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Molecular Human Reproduction Oxford University Press

A Novel Mouse Model of Testicular Granulosa Cell Tumors

Loading next page...
 
/lp/ou_press/a-novel-mouse-model-of-testicular-granulosa-cell-tumors-j3MaXZBfeW
Publisher
Oxford University Press
Copyright
© The Author 2018. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com
ISSN
1360-9947
eISSN
1460-2407
D.O.I.
10.1093/molehr/gay023
Publisher site
See Article on Publisher Site

Abstract

Abstract STUDY QUESTION What is the role of dysregulated transforming growth factor beta (TGFB) signaling in the development of sex cord-stromal tumors in the testis? SUMMARY ANSWER Overactivation of TGFB signaling results in the development of testicular tumors resembling granulosa cell tumors (GrCTs). WHAT IS KNOWN ALREADY In an earlier study, we demonstrated that constitutively active TGFB receptor 1 (TGFBR1) in ovarian somatic cells promotes the development of ovarian GrCTs. However, the consequence of dysregulation of TGFB signaling in the pathobiology of the testis, remains poorly defined. STUDY DESIGN SIZE, DURATION To identify the impact of dysregulation of TGFB signaling on the testis, we generated mice with constitutive activation of TGFBR1 using anti-Mullerian hormone receptor type 2 (Amhr2)-Cre recombinase. The effect of constitutively active TGFBR1 on testis development and the timeline of testicular tumor formation were examined. We further investigated the molecular features of testicular tumors and determined the expression of beta-catenin (CTNNB1) known to be involved in testicular GrCT development. PARTICIPANTS/MATERIALS, SETTING, METHODS Male mice with constitutive activation of TGFBR1 were examined at various developmental stages (i.e., from 1 week up to 6 months) along with controls. Testis samples were collected and processed for histological and molecular analyses, including haematoxylin and eosin (H & E) staining, real-time PCR, immunohistochemistry, immunofluorescence, and western blotting. Immunostaining/immunoblotting and real-time PCR experiments were performed using at least three animals per genotype. Data are presented as mean ± SEM. Statistical significance was determined using unpaired two-tail t-test and reported when P value is less than 0.05. MAIN RESULTS AND THE ROLE OF CHANCE Mice harboring constitutively active TGFBR1 in the testes developed tumors resembling testicular GrCTs, a rare type of tumors in the testis. The formation of testicular tumors led to altered cell proliferation, loss of germ cells, and defective spermatogenesis. Immunohistochemically, these tumors were positive for inhibin alpha (INHA), forkhead box O1 (FOXO1), and more importantly, forkhead box L2 (FOXL2), a protein specifically expressed in the ovary and required for normal granulosa cell differentiation and function. Consistent with the immunohistochemical findings, FOXL2 proteins were only detectable in testes of TGFBR1-CAAcre mice but not those of controls by western blotting, suggesting potential alteration of Sertoli cell fate. To explore mechanisms underlying the tumor-promoting effect of TGFBR1 overactivation, we examined the expression of beta-catenin (CTNNB1). The results revealed increased expression of CTNNB1 in testicular tumors in TGFBR1-CAAcre mice. Collectively, this study uncovered tumorigenic function of enhanced TGFB signaling in the testis. LARGE SCALE DATA N/A. LIMITATIONS REASONS FOR CAUTION This study was performed using mice, and the direct relevance of the experimental paradigm and findings to human testicular GrCTs awaits further investigation. Of note, constitutive activation of TGFBR1 was employed to enhance TGFB/SMAD signaling activity and may not be interpreted as the genetic cause of the disease. WIDER IMPLICATIONS OF THE FINDINGS This mouse model may prove to be a useful addition to the mouse genetics toolkit for GrCT research. Our finding that dysregulation of TGFB signaling results in the development of testicular GrCTs supports a common origin between Sertoli cells and granulosa cells, and highlights the paramount importance of balanced TGFB signaling in reproduction and development. STUDY FUNDING/COMPETING INTEREST(S) This research was supported by the National Institutes of Health grant R03HD082416 from the Eunice Kennedy Shriver National Institute of Child Health & Human Development and the New Faculty Start-up Funds from Texas A&M University awarded to Q.L. The authors declare no competing interest. Testicular granulosa cell tumor, gonad, TGFBR1, SMAD2/3, Mouse model © The Author 2018. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/about_us/legal/notices)

Journal

Molecular Human ReproductionOxford University Press

Published: May 21, 2018

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off