A new geodynamic model related to seismicity beneath the southeastern margin of the Tibetan Plateau revealed by regional tomography

A new geodynamic model related to seismicity beneath the southeastern margin of the Tibetan... Summary The southeastern margin of the Tibetan Plateau (SETP) presents the highest level of seismicity in mainland China. To understand the seismicity in this region, a new seismic experiment is carried out based on the tomographic inversion of P- and S-wave arrival times from the regional earthquakes recorded by 49 seismic stations in Yunnan Province of Southwest China. In this study, we reduce the extreme disproportionality of the data distribution using an events-combination method, and we use arrival times to construct the reference velocity model. Checkerboard tests and odd/even data tests are carried out to assess the reliability of the inversion results. The reliable P-wave velocity model reveals two low-velocity anomaly zones (LVAZs) bounded by major strike-slip faults. Almost all the large earthquakes in this region occurred in the two LVAZs and the trend of the two LVAZs is consistent with a GPS velocity field based on the Eurasia-fixed reference frame. We propose that the two LVAZs are material migration passageways in the SETP. In the vertical direction, the mechanically weak crustal materials are sliding southward with the rigid block, while the underlying mantle materials continue to be compressed by the collision. This vertical model is broadly consistent with the seismic anisotropy in the crust and lithospheric mantle from shear-wave splitting. The new regional geodynamic model gives a reasonable interpretation of the seismicity of the SETP, and we suggest that the material migration in the passageway zones plays an important role in the tectonic evolution of the SETP. Asia, Body waves, Seismic tomography, Dynamics: seismotectonics, Seismicity and tectonics © The Author(s) 2018. Published by Oxford University Press on behalf of The Royal Astronomical Society. This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/about_us/legal/notices) http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Geophysical Journal International Oxford University Press

A new geodynamic model related to seismicity beneath the southeastern margin of the Tibetan Plateau revealed by regional tomography

Loading next page...
 
/lp/ou_press/a-new-geodynamic-model-related-to-seismicity-beneath-the-southeastern-yy1SISAB7E
Publisher
The Royal Astronomical Society
Copyright
© The Author(s) 2018. Published by Oxford University Press on behalf of The Royal Astronomical Society.
ISSN
0956-540X
eISSN
1365-246X
D.O.I.
10.1093/gji/ggy183
Publisher site
See Article on Publisher Site

Abstract

Summary The southeastern margin of the Tibetan Plateau (SETP) presents the highest level of seismicity in mainland China. To understand the seismicity in this region, a new seismic experiment is carried out based on the tomographic inversion of P- and S-wave arrival times from the regional earthquakes recorded by 49 seismic stations in Yunnan Province of Southwest China. In this study, we reduce the extreme disproportionality of the data distribution using an events-combination method, and we use arrival times to construct the reference velocity model. Checkerboard tests and odd/even data tests are carried out to assess the reliability of the inversion results. The reliable P-wave velocity model reveals two low-velocity anomaly zones (LVAZs) bounded by major strike-slip faults. Almost all the large earthquakes in this region occurred in the two LVAZs and the trend of the two LVAZs is consistent with a GPS velocity field based on the Eurasia-fixed reference frame. We propose that the two LVAZs are material migration passageways in the SETP. In the vertical direction, the mechanically weak crustal materials are sliding southward with the rigid block, while the underlying mantle materials continue to be compressed by the collision. This vertical model is broadly consistent with the seismic anisotropy in the crust and lithospheric mantle from shear-wave splitting. The new regional geodynamic model gives a reasonable interpretation of the seismicity of the SETP, and we suggest that the material migration in the passageway zones plays an important role in the tectonic evolution of the SETP. Asia, Body waves, Seismic tomography, Dynamics: seismotectonics, Seismicity and tectonics © The Author(s) 2018. Published by Oxford University Press on behalf of The Royal Astronomical Society. This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/about_us/legal/notices)

Journal

Geophysical Journal InternationalOxford University Press

Published: May 7, 2018

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off