High-Order Entropy-based Population Diversity Measures in the Traveling Salesman Problem

High-Order Entropy-based Population Diversity Measures in the Traveling Salesman Problem To maintain the population diversity of genetic algorithms (GAs), we are required to employ an appropriate population diversity measure. However, commonly used population diversity measures designed for permutation problems do not consider the dependencies between the variables of the individuals in the population. We propose three types of population diversity measures that address high-order dependencies between the variables to investigate the effectiveness of considering high order dependencies. The first is formulated as the entropy of the probability distribution of individuals estimated from the population based on an m-th order Markov model. The second is an extension of the first. The third is similar to the first, but it is based on a variable order Markov model. The proposed population diversity measures are incorporated into the evaluation function of a GA for the traveling salesman problem to maintain population diversity. Experimental results demonstrate the effectiveness of the three types of high-order entropy-based population diversity measures against the commonly used population diversity measures. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Evolutionary Computation MIT Press

High-Order Entropy-based Population Diversity Measures in the Traveling Salesman Problem

Loading next page...
 
/lp/mit-press/high-order-entropy-based-population-diversity-measures-in-the-0JUiRKCahO
Publisher
MIT Press
Copyright
Copyright © MIT Press
ISSN
1063-6560
eISSN
1530-9304
DOI
10.1162/evco_a_00268
Publisher site
See Article on Publisher Site

Abstract

To maintain the population diversity of genetic algorithms (GAs), we are required to employ an appropriate population diversity measure. However, commonly used population diversity measures designed for permutation problems do not consider the dependencies between the variables of the individuals in the population. We propose three types of population diversity measures that address high-order dependencies between the variables to investigate the effectiveness of considering high order dependencies. The first is formulated as the entropy of the probability distribution of individuals estimated from the population based on an m-th order Markov model. The second is an extension of the first. The third is similar to the first, but it is based on a variable order Markov model. The proposed population diversity measures are incorporated into the evaluation function of a GA for the traveling salesman problem to maintain population diversity. Experimental results demonstrate the effectiveness of the three types of high-order entropy-based population diversity measures against the commonly used population diversity measures.

Journal

Evolutionary ComputationMIT Press

Published: Jan 1, 1

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off