Bayesian Regularization and Pruning Using a Laplace Prior

Bayesian Regularization and Pruning Using a Laplace Prior Standard techniques for improved generalization from neural networks include weight decay and pruning. Weight decay has a Bayesian interpretation with the decay function corresponding to a prior over weights. The method of transformation groups and maximum entropy suggests a Laplace rather than a gaussian prior. After training, the weights then arrange themselves into two classes: (1) those with a common sensitivity to the data error and (2) those failing to achieve this sensitivity and that therefore vanish. Since the critical value is determined adaptively during training, pruning—in the sense of setting weights to exact zeros—becomes an automatic consequence of regularization alone. The count of free parameters is also reduced automatically as weights are pruned. A comparison is made with results of MacKay using the evidence framework and a gaussian regularizer. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Neural Computation MIT Press

Bayesian Regularization and Pruning Using a Laplace Prior

Loading next page...
1
 
/lp/mit-press/bayesian-regularization-and-pruning-using-a-laplace-prior-7TFdAI5qOp
Publisher site
See Article on Publisher Site

Abstract

Standard techniques for improved generalization from neural networks include weight decay and pruning. Weight decay has a Bayesian interpretation with the decay function corresponding to a prior over weights. The method of transformation groups and maximum entropy suggests a Laplace rather than a gaussian prior. After training, the weights then arrange themselves into two classes: (1) those with a common sensitivity to the data error and (2) those failing to achieve this sensitivity and that therefore vanish. Since the critical value is determined adaptively during training, pruning—in the sense of setting weights to exact zeros—becomes an automatic consequence of regularization alone. The count of free parameters is also reduced automatically as weights are pruned. A comparison is made with results of MacKay using the evidence framework and a gaussian regularizer.

Journal

Neural ComputationMIT Press

Published: Jan 1, 1995

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off