“Whoa! It's like Spotify but for academic articles.”

Instant Access to Thousands of Journals for just $40/month

Get 2 Weeks Free

An Algorithm for the Detection of Faces on the Basis of Gabor Features and Information Maximization

We propose an algorithm for the detection of facial regions within input images. The characteristics of this algorithm are (1) a vast number of Gabor-type features (196,800) in various orientations, and with various frequencies and central positions, which are used as feature candidates in representing the patterns of an image, and (2) an information maximization principle, which is used to select several hundred features that are suitable for the detection of faces from among these candidates. Using only the selected features in face detection leads to reduced computational cost and is also expected to reduce generalization error. We applied the system, after training, to 42 input images with complex backgrounds (Test Set A from the Carnegie Mellon University face data set). The result was a high detection rate of 87.0%, with only six false detections. We compared the result with other published face detection algorithms. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Neural Computation MIT Press

Loading next page...

You're reading a free preview. Subscribe to read the entire article.

And millions more from thousands of peer-reviewed journals, for just $40/month

Get 2 Weeks Free

To be the best researcher, you need access to the best research

  • With DeepDyve, you can stop worrying about how much articles cost, or if it's too much hassle to order — it's all at your fingertips. Your research is important and deserves the top content.
  • Read from thousands of the leading scholarly journals from Springer, Elsevier, Nature, IEEE, Wiley-Blackwell and more.
  • All the latest content is available, no embargo periods.