“Whoa! It’s like Spotify but for academic articles.”

Instant Access to Thousands of Journals for just $40/month

Survival of Plant Seeds, Their UV Screens, and nptII DNA for 18 Months Outside the International Space Station

The plausibility that life was imported to Earth from elsewhere can be tested by subjecting life-forms to space travel. Ultraviolet light is the major liability in short-term exposures (Horneck et al., 2001), and plant seeds, tardigrades, and lichens—but not microorganisms and their spores—are candidates for long-term survival (Anikeeva et al., 1990; Sancho et al., 2007; Jönsson et al., 2008; de la Torre et al., 2010). In the present study, plant seeds germinated after 1.5 years of exposure to solar UV, solar and galactic cosmic radiation, temperature fluctuations, and space vacuum outside the International Space Station. Of the 2100 exposed wild-type Arabidopsis thaliana and Nicotiana tabacum (tobacco) seeds, 23% produced viable plants after return to Earth. Survival was lower in the Arabidopsis Wassilewskija ecotype and in mutants ( tt4-8 and fah1-2 ) lacking UV screens. The highest survival occurred in tobacco (44%). Germination was delayed in seeds shielded from solar light, yet full survival was attained, which indicates that longer space travel would be possible for seeds embedded in an opaque matrix. We conclude that a naked, seed-like entity could have survived exposure to solar UV radiation during a hypothetical transfer from Mars to Earth. Chemical samples of seed flavonoid UV screens were degraded by UV, but their overall capacity to absorb UV was retained. Naked DNA encoding the nptII gene (kanamycin resistance) was also degraded by UV. A fragment, however, was detected by the polymerase chain reaction, and the gene survived in space when protected from UV. Even if seeds do not survive, components ( e.g., their DNA) might survive transfer over cosmic distances. Key Words: Origin of life—Panspermia—Plant seeds—Flavonoid UV screens—DNA degradation—UV resistance—International Space Station. Astrobiology 12, 517–528. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Astrobiology Mary Ann Liebert

Survival of Plant Seeds, Their UV Screens, and nptII DNA for 18 Months Outside the International Space Station

Abstract

The plausibility that life was imported to Earth from elsewhere can be tested by subjecting life-forms to space travel. Ultraviolet light is the major liability in short-term exposures (Horneck et al., 2001), and plant seeds, tardigrades, and lichens—but not microorganisms and their spores—are candidates for long-term survival (Anikeeva et al., 1990; Sancho et al., 2007; Jönsson et al., 2008; de la Torre et al., 2010). In the present study, plant seeds germinated after 1.5 years of exposure to solar UV, solar and galactic cosmic radiation, temperature fluctuations, and space vacuum outside the International Space Station. Of the 2100 exposed wild-type Arabidopsis thaliana and Nicotiana tabacum (tobacco) seeds, 23% produced viable plants after return to Earth. Survival was lower in the Arabidopsis Wassilewskija ecotype and in mutants ( tt4-8 and fah1-2 ) lacking UV screens. The highest survival occurred in tobacco (44%). Germination was delayed in seeds shielded from solar light, yet full survival was attained, which indicates that longer space travel would be possible for seeds embedded in an opaque matrix. We conclude that a naked, seed-like entity could have survived exposure to solar UV radiation during a hypothetical transfer from Mars to Earth. Chemical samples of seed flavonoid UV screens were degraded by UV, but their overall capacity to absorb UV was retained. Naked DNA encoding the nptII gene (kanamycin resistance) was also degraded by UV. A fragment, however, was detected by the polymerase chain reaction, and the gene survived in space when protected from UV. Even if seeds do not survive, components ( e.g., their DNA) might survive transfer over cosmic distances. Key Words: Origin of life—Panspermia—Plant seeds—Flavonoid UV screens—DNA degradation—UV resistance—International Space Station. Astrobiology 12, 517–528.
Loading next page...
 
/lp/mary-ann-liebert/survival-of-plant-seeds-their-uv-screens-and-nptii-dna-for-18-months-LraAV0oJ0v

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

How DeepDyve Works

Spend time researching, not time worrying you’re buying articles that might not be useful.

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from Springer, Elsevier, Nature, IEEE, Wiley-Blackwell and more.

All the latest content is available, no embargo periods.

See the journals in your area

Simple and Affordable Pricing

14-day free trial. Cancel anytime, with a 30-day money-back guarantee.

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$40/month

Best Deal — 25% off

Annual Plan

  • All the features of the Professional Plan, but for 25% off!
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$30/month
billed annually