Studies of Impending Oligonucleotide Therapeutics in Simulated Biofluids

Studies of Impending Oligonucleotide Therapeutics in Simulated Biofluids Synthetic oligonucleotides, their complexes and conjugates with other biomolecules represent valuable research tools and therapeutic agents. In spite of growing applications in basic research and clinical science, only few studies have addressed the issue of such compounds' stability in biological media. Herein, we studied the stability of two therapeutically relevant oligonucleotide probes in simulated biofluids; the 21 nucleotide-long DNA/locked nucleic acid oligonucleotide ON targeted toward cancer-associated BRAF V600E mutation, and a longer DNA analog (TTC) originating from BRAF gene. We found that stability of peptide–oligonucleotide conjugates (POCs) in human serum (HS) was superior compared with the naked or complexed 21mer oligonucleotide, whereas stability of POCs in simulated gastric juice (GJ) was dependent on the peptide sequence. Addition of pepstatin A in general increased the stability of oligonucleotides after 24 h digestion in HS and simulated GJ. Similarly, complexation with optimal amounts of histone proteins was found to rescue oligonucleotide stability after 24 h digestion in hydrochloric acid. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png nucleic acid therapeutics Mary Ann Liebert

Studies of Impending Oligonucleotide Therapeutics in Simulated Biofluids

Preview Only

Studies of Impending Oligonucleotide Therapeutics in Simulated Biofluids

Abstract

Synthetic oligonucleotides, their complexes and conjugates with other biomolecules represent valuable research tools and therapeutic agents. In spite of growing applications in basic research and clinical science, only few studies have addressed the issue of such compounds' stability in biological media. Herein, we studied the stability of two therapeutically relevant oligonucleotide probes in simulated biofluids; the 21 nucleotide-long DNA/locked nucleic acid oligonucleotide ON targeted toward cancer-associated BRAF V600E mutation, and a longer DNA analog (TTC) originating from BRAF gene. We found that stability of peptide–oligonucleotide conjugates (POCs) in human serum (HS) was superior compared with the naked or complexed 21mer oligonucleotide, whereas stability of POCs in simulated gastric juice (GJ) was dependent on the peptide sequence. Addition of pepstatin A in general increased the stability of oligonucleotides after 24 h digestion in HS and simulated GJ. Similarly, complexation with optimal amounts of histone proteins was found to rescue oligonucleotide stability after 24 h digestion in hydrochloric acid.
Loading next page...
 
/lp/mary-ann-liebert/studies-of-impending-oligonucleotide-therapeutics-in-simulated-u9G6XQAHqJ
Publisher
Mary Ann Liebert
ISSN
2159-3337
D.O.I.
10.1089/nat.2017.0704
Publisher site
See Article on Publisher Site

Abstract

Synthetic oligonucleotides, their complexes and conjugates with other biomolecules represent valuable research tools and therapeutic agents. In spite of growing applications in basic research and clinical science, only few studies have addressed the issue of such compounds' stability in biological media. Herein, we studied the stability of two therapeutically relevant oligonucleotide probes in simulated biofluids; the 21 nucleotide-long DNA/locked nucleic acid oligonucleotide ON targeted toward cancer-associated BRAF V600E mutation, and a longer DNA analog (TTC) originating from BRAF gene. We found that stability of peptide–oligonucleotide conjugates (POCs) in human serum (HS) was superior compared with the naked or complexed 21mer oligonucleotide, whereas stability of POCs in simulated gastric juice (GJ) was dependent on the peptide sequence. Addition of pepstatin A in general increased the stability of oligonucleotides after 24 h digestion in HS and simulated GJ. Similarly, complexation with optimal amounts of histone proteins was found to rescue oligonucleotide stability after 24 h digestion in hydrochloric acid.

Journal

nucleic acid therapeuticsMary Ann Liebert

Published: Dec 1, 2018

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off