“Whoa! It’s like Spotify but for academic articles.”

Instant Access to Thousands of Journals for just $40/month

Interaction of Anti-HIV Type 1 Antibody 2F5 with Phospholipid Bilayers and Its Relevance for the Mechanism of Virus Neutralization

Broadly neutralizing monoclonal antibody (MAb) 2F5 targets a linear epitope within the highly conserved membrane proximal external region (MPER) of the HIV-1 envelope protein gp41 integral subunit. Prospective vaccine developments warrant efforts currently underway to unveil the mechanistic and structural basis of its mode of action. One open question relates to the putative role that membrane phospholipids might play in the neutralization process. In this work, we establish experimental conditions that allow monitoring 2F5 insertion into lipid bilayers. Then, we compare the abilities of 2F5-based MAb, Fabs, and 2F5-specific antibodies recovered from immunized rabbits to directly penetrate into lipid bilayers and block the lytic activity of MPER-derived peptides. Antibody insertion induced membrane perturbation, which was blocked on interacting with the peptide epitope, thereby suggesting that such phenomenon was primarily mediated by the epitope-binding site. The long, hydrophobic complementarity-determining region (CDR)-H3 loop contributed little to this effect. In contrast, the CDR-H3 loop was required for blocking the lytic activity of MPER-based peptides and viral neutralization. Thus, our results suggest that core epitope binding plus association with lipid bilayers are not in conjunction sufficient to support viral neutralization by 2F5. Moreover, they support a role for the CDR-H3 loop in establishing secondary interactions with lipids and/or gp41 that would block the membrane-perturbing activity of MPER during fusion. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png AIDS Research and Human Retroviruses Mary Ann Liebert

Interaction of Anti-HIV Type 1 Antibody 2F5 with Phospholipid Bilayers and Its Relevance for the Mechanism of Virus Neutralization

Abstract

Broadly neutralizing monoclonal antibody (MAb) 2F5 targets a linear epitope within the highly conserved membrane proximal external region (MPER) of the HIV-1 envelope protein gp41 integral subunit. Prospective vaccine developments warrant efforts currently underway to unveil the mechanistic and structural basis of its mode of action. One open question relates to the putative role that membrane phospholipids might play in the neutralization process. In this work, we establish experimental conditions that allow monitoring 2F5 insertion into lipid bilayers. Then, we compare the abilities of 2F5-based MAb, Fabs, and 2F5-specific antibodies recovered from immunized rabbits to directly penetrate into lipid bilayers and block the lytic activity of MPER-derived peptides. Antibody insertion induced membrane perturbation, which was blocked on interacting with the peptide epitope, thereby suggesting that such phenomenon was primarily mediated by the epitope-binding site. The long, hydrophobic complementarity-determining region (CDR)-H3 loop contributed little to this effect. In contrast, the CDR-H3 loop was required for blocking the lytic activity of MPER-based peptides and viral neutralization. Thus, our results suggest that core epitope binding plus association with lipid bilayers are not in conjunction sufficient to support viral neutralization by 2F5. Moreover, they support a role for the CDR-H3 loop in establishing secondary interactions with lipids and/or gp41 that would block the membrane-perturbing activity of MPER during fusion.
Loading next page...
1
 
/lp/mary-ann-liebert/interaction-of-anti-hiv-type-1-antibody-2f5-with-phospholipid-bilayers-B0uMoe0WVH

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

How DeepDyve Works

Spend time researching, not time worrying you’re buying articles that might not be useful.

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from Springer, Elsevier, Nature, IEEE, Wiley-Blackwell and more.

All the latest content is available, no embargo periods.

See the journals in your area

Simple and Affordable Pricing

14-day free trial. Cancel anytime, with a 30-day money-back guarantee.

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$40/month

Best Deal — 25% off

Annual Plan

  • All the features of the Professional Plan, but for 25% off!
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$30/month
billed annually