Improved Targeting and Tumor Retention of a Newly Synthesized Antineoplaston A10 Derivative by Intratumoral Administration: Molecular Docking, Technetium 99m Radiolabeling, and In Vivo Biodistribution Studies

Improved Targeting and Tumor Retention of a Newly Synthesized Antineoplaston A10 Derivative by... AbstractBackground: Recently, the direct intratumoral (i.t.) injection of anticancer agents has been investigated. A newly synthesized Antineoplaston A10 analog 3-(4-methoxybenzoylamino)-2,6-piperidinedione (MPD) showed an antitumor activity in human breast cancer cell line. Unfortunately, MPD suffered from poor water solubility. Materials and Methods:Pseudoternary phase diagram of oil (isopropyl myristate), surfactant (Tween 80), cosurfactant (ethanol), and water was plotted. MPD microemulsion (MPDME) was developed and characterized for particle size (PS), polydispersity index (PDI), zeta potential (ZP), and morphology (transmission electron microscopy). MPDME and MPD solution (MPDS) were radiolabeled with technetium 99m (99mTc) using stannous chloride dihydrate (SnCl2.2H2O). Molecular docking of MPD and 99mTc-MPD was performed to study the interaction with DNA. Results:The impacts of intravenous (i.v.) and i.t. injections of 99mTc-MPDME and 99mTc-MPDS on biodistribution were studied. The developed MPDME showed spherical droplets with mean PS (74.00 ± 5.69 nm), PDI (0.25 ± 0.03), and ZP (33.90 ± 0.90 mV). Labeling yield of 99mTc-MPDME and 99mTc-MPDS was 97.00% ± 0.60% and 92.02% ± 0.45%, respectively. MPD and 99mTc-MPD showed almost same binding affinity with DNA binding site. Biodistribution results showed that i.t. injection of 99mTc-MPDME significantly enhanced tumor retention compared to i.v. route. Conclusions:Herein, the authors concluded that microemulsion could be used as i.t. injectable delivery vehicle to improve targeting and tumor retention of MPD. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Cancer Biotherapy & Radiopharmaceuticals Mary Ann Liebert

Improved Targeting and Tumor Retention of a Newly Synthesized Antineoplaston A10 Derivative by Intratumoral Administration: Molecular Docking, Technetium 99m Radiolabeling, and In Vivo Biodistribution Studies

Preview Only

Improved Targeting and Tumor Retention of a Newly Synthesized Antineoplaston A10 Derivative by Intratumoral Administration: Molecular Docking, Technetium 99m Radiolabeling, and In Vivo Biodistribution Studies

Abstract

AbstractBackground: Recently, the direct intratumoral (i.t.) injection of anticancer agents has been investigated. A newly synthesized Antineoplaston A10 analog 3-(4-methoxybenzoylamino)-2,6-piperidinedione (MPD) showed an antitumor activity in human breast cancer cell line. Unfortunately, MPD suffered from poor water solubility. Materials and Methods:Pseudoternary phase diagram of oil (isopropyl myristate), surfactant (Tween 80), cosurfactant (ethanol), and water was plotted. MPD microemulsion (MPDME) was developed and characterized for particle size (PS), polydispersity index (PDI), zeta potential (ZP), and morphology (transmission electron microscopy). MPDME and MPD solution (MPDS) were radiolabeled with technetium 99m (99mTc) using stannous chloride dihydrate (SnCl2.2H2O). Molecular docking of MPD and 99mTc-MPD was performed to study the interaction with DNA. Results:The impacts of intravenous (i.v.) and i.t. injections of 99mTc-MPDME and 99mTc-MPDS on biodistribution were studied. The developed MPDME showed spherical droplets with mean PS (74.00 ± 5.69 nm), PDI (0.25 ± 0.03), and ZP (33.90 ± 0.90 mV). Labeling yield of 99mTc-MPDME and 99mTc-MPDS was 97.00% ± 0.60% and 92.02% ± 0.45%, respectively. MPD and 99mTc-MPD showed almost same binding affinity with DNA binding site. Biodistribution results showed that i.t. injection of 99mTc-MPDME significantly enhanced tumor retention compared to i.v. route. Conclusions:Herein, the authors concluded that microemulsion could be used as i.t. injectable delivery vehicle to improve targeting and tumor retention of MPD.
Loading next page...
 
/lp/mary-ann-liebert/improved-targeting-and-tumor-retention-of-a-newly-synthesized-O0wiGevl0u
Publisher
Mary Ann Liebert
ISSN
1084-9785
D.O.I.
10.1089/cbr.2017.2431
Publisher site
See Article on Publisher Site

Abstract

AbstractBackground: Recently, the direct intratumoral (i.t.) injection of anticancer agents has been investigated. A newly synthesized Antineoplaston A10 analog 3-(4-methoxybenzoylamino)-2,6-piperidinedione (MPD) showed an antitumor activity in human breast cancer cell line. Unfortunately, MPD suffered from poor water solubility. Materials and Methods:Pseudoternary phase diagram of oil (isopropyl myristate), surfactant (Tween 80), cosurfactant (ethanol), and water was plotted. MPD microemulsion (MPDME) was developed and characterized for particle size (PS), polydispersity index (PDI), zeta potential (ZP), and morphology (transmission electron microscopy). MPDME and MPD solution (MPDS) were radiolabeled with technetium 99m (99mTc) using stannous chloride dihydrate (SnCl2.2H2O). Molecular docking of MPD and 99mTc-MPD was performed to study the interaction with DNA. Results:The impacts of intravenous (i.v.) and i.t. injections of 99mTc-MPDME and 99mTc-MPDS on biodistribution were studied. The developed MPDME showed spherical droplets with mean PS (74.00 ± 5.69 nm), PDI (0.25 ± 0.03), and ZP (33.90 ± 0.90 mV). Labeling yield of 99mTc-MPDME and 99mTc-MPDS was 97.00% ± 0.60% and 92.02% ± 0.45%, respectively. MPD and 99mTc-MPD showed almost same binding affinity with DNA binding site. Biodistribution results showed that i.t. injection of 99mTc-MPDME significantly enhanced tumor retention compared to i.v. route. Conclusions:Herein, the authors concluded that microemulsion could be used as i.t. injectable delivery vehicle to improve targeting and tumor retention of MPD.

Journal

Cancer Biotherapy & RadiopharmaceuticalsMary Ann Liebert

Published: Aug 1, 2018

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off