“Whoa! It’s like Spotify but for academic articles.”

Instant Access to Thousands of Journals for just $40/month

Evaluation of a Thin and Mechanically Stable Collagen Cell Carrier

The biological function of adherent cell populations strongly depends on the physical and biochemical properties of extracellular matrix molecules. Therefore, numerous biocompatible cell carriers have been developed to specifically influence cell attachment, proliferation, cellular differentiation, and tissue formation for diverse cell culture applications and cell-based therapies. In the present study, we evaluated the mechanical and the cell biological properties of a novel, thin, and planar collagen scaffold. The cell carrier is based on fibrillar bovine collagen type I and exhibits a low material thickness coupled with a high mechanical stability as measured by tensile tests. The influence of this new biomaterial on cell viability, proliferation, and cell differentiation was analyzed using 5-bromo-2-deoxyuridine (BrdU) proliferation assay, immunocytochemistry, water-soluble tetrazolium salt-1 assay (WST-1), live cell imaging, and electron microscopy. Cell culture experiments with the human osteosarcoma cell line Saos-2, human mesenchymal stem cells, and rodent cardiomyocytes demonstrated the in vitro biocompatibility of this chemically noncrosslinked scaffold. Both the mechanical characteristics and the in vitro biocompatibility of this collagen type I carrier facilitate the engineering of thin transferable tissue constructs and offer new possibilities in the fields of cell culture techniques, tissue engineering, and regenerative medicine. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Tissue Engineering, Part C: Methods Mary Ann Liebert

Evaluation of a Thin and Mechanically Stable Collagen Cell Carrier

Abstract

The biological function of adherent cell populations strongly depends on the physical and biochemical properties of extracellular matrix molecules. Therefore, numerous biocompatible cell carriers have been developed to specifically influence cell attachment, proliferation, cellular differentiation, and tissue formation for diverse cell culture applications and cell-based therapies. In the present study, we evaluated the mechanical and the cell biological properties of a novel, thin, and planar collagen scaffold. The cell carrier is based on fibrillar bovine collagen type I and exhibits a low material thickness coupled with a high mechanical stability as measured by tensile tests. The influence of this new biomaterial on cell viability, proliferation, and cell differentiation was analyzed using 5-bromo-2-deoxyuridine (BrdU) proliferation assay, immunocytochemistry, water-soluble tetrazolium salt-1 assay (WST-1), live cell imaging, and electron microscopy. Cell culture experiments with the human osteosarcoma cell line Saos-2, human mesenchymal stem cells, and rodent cardiomyocytes demonstrated the in vitro biocompatibility of this chemically noncrosslinked scaffold. Both the mechanical characteristics and the in vitro biocompatibility of this collagen type I carrier facilitate the engineering of thin transferable tissue constructs and offer new possibilities in the fields of cell culture techniques, tissue engineering, and regenerative medicine.
Loading next page...
 
/lp/mary-ann-liebert/evaluation-of-a-thin-and-mechanically-stable-collagen-cell-carrier-Io0zVaJQEL

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

How DeepDyve Works

Spend time researching, not time worrying you’re buying articles that might not be useful.

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from Springer, Elsevier, Nature, IEEE, Wiley-Blackwell and more.

All the latest content is available, no embargo periods.

See the journals in your area

Simple and Affordable Pricing

14-day free trial. Cancel anytime, with a 30-day money-back guarantee.

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$40/month

Best Deal — 25% off

Annual Plan

  • All the features of the Professional Plan, but for 25% off!
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$30/month
billed annually