A Novel Ribonuclease from Rana Chensinensis and Its Potential for the Treatment of Human Breast Cancer

A Novel Ribonuclease from Rana Chensinensis and Its Potential for the Treatment of Human Breast... AbstractOnconase, a member of the pancreatic RNAase A superfamily of ribonucleases, is a chemotherapeutic agent, which has demonstrated selective antitumor activity in a variety of human malignancies. However, little is known about the mechanisms of it's action on human breast cancer cells. To investigate a novel Onconase from the frog of Rana chensinensis changbaishanensis on human breast cancer cells and the underlying mechanisms, a novel Onconase named Rdchonc from Rana chensinensis changbaishanensis was cloned by polymerase chain reaction. SDS-PAGE revealed that the Rdchonc had a high heterologous expression in Escherichia coli BL21(DE3). The MTT assay indicated that purified Rdchonc was cytotoxic to human breast cancer MCF-7 and MD-MB-231 cells. Treatment with 20 μg/mL Rdchonc protein significantly reduced the invasive capacities of MCF-7 and MD-MB-231 cells. Interestingly, the authors found that such inhibitory effort on tumor cell growth induced by Rdchonc treatment may be explained by the regulation of proapoptotic Bcl-2 family proteins and inhibition of MEK/ERK phosphorylation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Cancer Biotherapy & Radiopharmaceuticals Mary Ann Liebert

A Novel Ribonuclease from Rana Chensinensis and Its Potential for the Treatment of Human Breast Cancer

Preview Only

A Novel Ribonuclease from Rana Chensinensis and Its Potential for the Treatment of Human Breast Cancer

Abstract

AbstractOnconase, a member of the pancreatic RNAase A superfamily of ribonucleases, is a chemotherapeutic agent, which has demonstrated selective antitumor activity in a variety of human malignancies. However, little is known about the mechanisms of it's action on human breast cancer cells. To investigate a novel Onconase from the frog of Rana chensinensis changbaishanensis on human breast cancer cells and the underlying mechanisms, a novel Onconase named Rdchonc from Rana chensinensis changbaishanensis was cloned by polymerase chain reaction. SDS-PAGE revealed that the Rdchonc had a high heterologous expression in Escherichia coli BL21(DE3). The MTT assay indicated that purified Rdchonc was cytotoxic to human breast cancer MCF-7 and MD-MB-231 cells. Treatment with 20 μg/mL Rdchonc protein significantly reduced the invasive capacities of MCF-7 and MD-MB-231 cells. Interestingly, the authors found that such inhibitory effort on tumor cell growth induced by Rdchonc treatment may be explained by the regulation of proapoptotic Bcl-2 family proteins and inhibition of MEK/ERK phosphorylation.
Loading next page...
 
/lp/mary-ann-liebert/a-novel-ribonuclease-from-rana-chensinensis-and-its-potential-for-the-BAxrW955Af
Publisher
Mary Ann Liebert
ISSN
1084-9785
D.O.I.
10.1089/cbr.2015.1891
Publisher site
See Article on Publisher Site

Abstract

AbstractOnconase, a member of the pancreatic RNAase A superfamily of ribonucleases, is a chemotherapeutic agent, which has demonstrated selective antitumor activity in a variety of human malignancies. However, little is known about the mechanisms of it's action on human breast cancer cells. To investigate a novel Onconase from the frog of Rana chensinensis changbaishanensis on human breast cancer cells and the underlying mechanisms, a novel Onconase named Rdchonc from Rana chensinensis changbaishanensis was cloned by polymerase chain reaction. SDS-PAGE revealed that the Rdchonc had a high heterologous expression in Escherichia coli BL21(DE3). The MTT assay indicated that purified Rdchonc was cytotoxic to human breast cancer MCF-7 and MD-MB-231 cells. Treatment with 20 μg/mL Rdchonc protein significantly reduced the invasive capacities of MCF-7 and MD-MB-231 cells. Interestingly, the authors found that such inhibitory effort on tumor cell growth induced by Rdchonc treatment may be explained by the regulation of proapoptotic Bcl-2 family proteins and inhibition of MEK/ERK phosphorylation.

Journal

Cancer Biotherapy & RadiopharmaceuticalsMary Ann Liebert

Published: Nov 1, 2015

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off