“Whoa! It’s like Spotify but for academic articles.”

Instant Access to Thousands of Journals for just $40/month

A Computational Fluid Dynamics Model for Drug Delivery in a Nasal Cavity with Inferior Turbinate Hypertrophy

Background: Intranasal medications are commonly used in treating nasal diseases. However, technical details of the correct usage of these medications for nasal cavity with obstruction are unclear. Methods: A three-dimensional model of nasal cavity was constructed from MRI scans of a healthy human subject. Nasal cavities corresponding to healthy, moderate, and severe nasal obstruction (NO) were simulated by enlarging the inferior turbinate geometrically, which was documented by approximately one-third reduction of the minimum cross-sectional area for the moderate and two-thirds for the severe obstruction. The discrete phase model based on steady-state computational fluid dynamics was used to study the gas–particle flow. The results were presented with drug particle (from 7 × 10 −5 to 10 −7 m) deposition distribution along the lateral walls inside these three nasal cavities, and comparisons of the particle ratio escaping from the cavity were also presented and discussed. Results: Nasal patency is an essential condition that had the most impact on particle deposition of the factors studied; the particle percentage escaping the nasal cavity decreased to less than a half and one-tenth for the moderately and severely blocked noses. Decreasing of flow rate and particle diameter increased the escaping ratio; however, zero escaping percentage was detected with the absence of air flow and the effect was less noticeable when the particle diameter was very small (<10 −6 m). The existence of inspiratory flow and head tilt angle helped to improve the particle escaping ratio for the healthy nose; however, such changes were not significant for the moderately and severely blocked noses. Conclusion: When using an intranasal medication, it is advisable to have a moderate inspiratory air-flow rate and small size particles to improve particle escaping ratio. Various head positions suggested by clinicians do not seem to improve the drug escaping ratio significantly for the nasal cavities with inferior turbinate hypertrophy. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Aerosol Medicine and Pulmonary Drug Delivery Mary Ann Liebert

A Computational Fluid Dynamics Model for Drug Delivery in a Nasal Cavity with Inferior Turbinate Hypertrophy

Abstract

Background: Intranasal medications are commonly used in treating nasal diseases. However, technical details of the correct usage of these medications for nasal cavity with obstruction are unclear. Methods: A three-dimensional model of nasal cavity was constructed from MRI scans of a healthy human subject. Nasal cavities corresponding to healthy, moderate, and severe nasal obstruction (NO) were simulated by enlarging the inferior turbinate geometrically, which was documented by approximately one-third reduction of the minimum cross-sectional area for the moderate and two-thirds for the severe obstruction. The discrete phase model based on steady-state computational fluid dynamics was used to study the gas–particle flow. The results were presented with drug particle (from 7 × 10 −5 to 10 −7 m) deposition distribution along the lateral walls inside these three nasal cavities, and comparisons of the particle ratio escaping from the cavity were also presented and discussed. Results: Nasal patency is an essential condition that had the most impact on particle deposition of the factors studied; the particle percentage escaping the nasal cavity decreased to less than a half and one-tenth for the moderately and severely blocked noses. Decreasing of flow rate and particle diameter increased the escaping ratio; however, zero escaping percentage was detected with the absence of air flow and the effect was less noticeable when the particle diameter was very small (<10 −6 m). The existence of inspiratory flow and head tilt angle helped to improve the particle escaping ratio for the healthy nose; however, such changes were not significant for the moderately and severely blocked noses. Conclusion: When using an intranasal medication, it is advisable to have a moderate inspiratory air-flow rate and small size particles to improve particle escaping ratio. Various head positions suggested by clinicians do not seem to improve the drug escaping ratio significantly for the nasal cavities with inferior turbinate hypertrophy.
Loading next page...
 
/lp/mary-ann-liebert/a-computational-fluid-dynamics-model-for-drug-delivery-in-a-nasal-ZBZ4ngWo5R

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

How DeepDyve Works

Spend time researching, not time worrying you’re buying articles that might not be useful.

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from Springer, Elsevier, Nature, IEEE, Wiley-Blackwell and more.

All the latest content is available, no embargo periods.

See the journals in your area

Simple and Affordable Pricing

14-day free trial. Cancel anytime, with a 30-day money-back guarantee.

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$40/month

Best Deal — 25% off

Annual Plan

  • All the features of the Professional Plan, but for 25% off!
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$30/month
billed annually