From intensional properties to universal support

From intensional properties to universal support Abstract: An optimality-theoretic (OT) system is specified by defining its constraints and the structures they evaluate. These give rise to a set of grammars, the typology of the system, which emerges from the often complex interactions among constraints and structures. Every typology is determined by a finite collection of candidate sets (csets). How do we know that we have assembled a universal support , a collection of csets sufficient to distinguish all grammars of the system? Lacking a universal support, we do not have the typology and we cannot deal systematically with its structure and consequences. This concrete question can be answered in terms of an enhanced abstract understanding of typological structure. Under property theory (Alber & Prince 2015a,b), a typology is resolved into a set of properties: ranking conditions that have mutually exclusive values . When the structural correlates of each value are determined, the ranking values defining a grammar also determine the extensional traits exhibited in its optima. Suppose we have the property analysis of a typology derived from a proposed support for an OT system. If every consistent choice of values ensures that a single optimum is chosen in every cset admitted by the system, then no grammar derived from the proposed support can be split by consideration of further csets, and that support must be universal for the system. This method of proof is applicable to any OT system. Here we use it to analyze the prosodic system nGX (Alber & Prince 2015b), determining its universal supports and the shape of the forms made optimal by its grammars. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Language Linguistic Society of America

From intensional properties to universal support

Language, Volume 92 (2) – Jun 28, 2016

Loading next page...
 
/lp/linguistic-society-of-america/from-intensional-properties-to-universal-support-tLHMnOk0C4
Publisher
Linguistic Society of America
Copyright
Copyright © Linguistic Society of America.
ISSN
1535-0665
Publisher site
See Article on Publisher Site

Abstract

Abstract: An optimality-theoretic (OT) system is specified by defining its constraints and the structures they evaluate. These give rise to a set of grammars, the typology of the system, which emerges from the often complex interactions among constraints and structures. Every typology is determined by a finite collection of candidate sets (csets). How do we know that we have assembled a universal support , a collection of csets sufficient to distinguish all grammars of the system? Lacking a universal support, we do not have the typology and we cannot deal systematically with its structure and consequences. This concrete question can be answered in terms of an enhanced abstract understanding of typological structure. Under property theory (Alber & Prince 2015a,b), a typology is resolved into a set of properties: ranking conditions that have mutually exclusive values . When the structural correlates of each value are determined, the ranking values defining a grammar also determine the extensional traits exhibited in its optima. Suppose we have the property analysis of a typology derived from a proposed support for an OT system. If every consistent choice of values ensures that a single optimum is chosen in every cset admitted by the system, then no grammar derived from the proposed support can be split by consideration of further csets, and that support must be universal for the system. This method of proof is applicable to any OT system. Here we use it to analyze the prosodic system nGX (Alber & Prince 2015b), determining its universal supports and the shape of the forms made optimal by its grammars.

Journal

LanguageLinguistic Society of America

Published: Jun 28, 2016

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off