Access the full text.
Sign up today, get DeepDyve free for 14 days.
References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.
Diabetic nephropathy (DN), a distinct manifestation of diabetic kidney disease, affects approximately 30% of patients with diabetes. While most attention has been focused on glomerular changes related to DN, there is growing evidence that tubulopathy is a key feature in the pathogenesis of this disease. The renal proximal tubule cells (RPTCs) are particularly sensitive to the deleterious effect of chronic hyperglycemia. However, the cellular changes that control the dysfunction of the RPTCs are not fully understood. Controlling glucose reabsorption in the proximal tubules via inhibition of glucose transporters (GLUT) has emerged as a promising therapeutic in ameliorating DN. Overactivation of the renal endocannabinoid (eCB) system via the cannabinoid-1 receptor (CB<sub>1</sub>R) contributes to the development of DN, and its blockade by globally acting or peripherally restricted CB<sub>1</sub>R antagonists has been shown to ameliorate renal dysfunction in different murine models for diabetes. Recently, we have utilized various pharmacological and genetic tools to show that the eCB/CB<sub>1</sub>R system contributes to the development of DN via regulating the expression, translocation, and activity of the facilitative GLUT2 located in the RPTCs. These findings have the potential to be translated into therapy, and support the rationale for the preclinical development of novel renal-specific CB<sub>1</sub>R and/or GLUT2 inhibitors for the treatment of DN.
Nephron – Karger
Published: Sep 1, 2019
Keywords: Renal proximal tubule cells; Cannabinoid-1 receptor ; Glucose transporters 2; Sodium-dependent glucose cotransporte 2
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.