Access the full text.
Sign up today, get DeepDyve free for 14 days.
A. Natsume, Motokazu Ito, Keisuke Katsushima, F. Ohka, Akira Hatanaka, Keiko Shinjo, Shinya Sato, Satoru Takahashi, Yuta Ishikawa, I. Takeuchi, Hiroki Shimogawa, M. Uesugi, H. Okano, Seung Kim, T. Wakabayashi, J. Issa, Y. Sekido, Y. Kondo (2013)
Chromatin regulator PRC2 is a key regulator of epigenetic plasticity in glioblastoma.Cancer research, 73 14
I. Hsu, R. Metcalf, T. Sun, J. Welsh, N. Wang, C. Harris (1991)
Mutational hotspot in the p53 gene in human hepatocellular carcinomas.Nature, 350 6317
J. Marquardt, J. Andersen, S. Thorgeirsson (2015)
Functional and genetic deconstruction of the cellular origin in liver cancerNature Reviews Cancer, 15
H. O’Hagan, Wei Wang, S. Sen, C. Shields, Stella Lee, Yang Zhang, Eriko Clements, Yi Cai, L. Neste, H. Easwaran, R. Casero, C. Sears, S. Baylin (2011)
Oxidative damage targets complexes containing DNA methyltransferases, SIRT1, and polycomb members to promoter CpG Islands.Cancer cell, 20 5
Seung-Oe Lim, Jin-Mo Gu, M. Kim, Hyun-Soo Kim, Y. Park, C. Park, J. Cho, Young Park, G. Jung (2008)
Epigenetic changes induced by reactive oxygen species in hepatocellular carcinoma: methylation of the E-cadherin promoter.Gastroenterology, 135 6
T. Tahara, Eiichiro Yamamoto, Priyanka Madireddi, Hiromu Suzuki, R. Maruyama, W. Chung, J. Garriga, J. Jelinek, H. Yamano, T. Sugai, Y. Kondo, M. Toyota, J. Issa, M. Estecio (2014)
Colorectal carcinomas with CpG island methylator phenotype 1 frequently contain mutations in chromatin regulators.Gastroenterology, 146 2
A. Hmadcha, F. Bedoya, F. Sobrino, E. Pintado (1999)
Methylation-Dependent Gene Silencing Induced by Interleukin 1β via Nitric Oxide ProductionThe Journal of Experimental Medicine, 190
Naoki Oishi, T. Yamashita, S. Kaneko (2014)
Molecular Biology of Liver Cancer Stem CellsLiver Cancer, 3
Katsunori Semi, Yasuhiro Yamada (2015)
Induced pluripotent stem cell technology for dissecting the cancer epigenomeCancer Science, 106
Yeshayahu Schlesinger, R. Straussman, I. Keshet, S. Farkash, M. Hecht, J. Zimmerman, E. Eden, Z. Yakhini, E. Ben-Shushan, B. Reubinoff, Y. Bergman, I. Simon, H. Cedar (2007)
Polycomb-mediated methylation on Lys27 of histone H3 pre-marks genes for de novo methylation in cancerNature Genetics, 39
Laurence Hopkins, I Rowe, D. Houlihan (2013)
Oncofetal gene SALL4 in aggressive hepatocellular carcinoma.The New England journal of medicine, 369 12
Y. Totoki, K. Tatsuno, K. Covington, H. Ueda, C. Creighton, Mamoru Kato, S. Tsuji, L. Donehower, B. Slagle, Hiromi Nakamura, Shogo Yamamoto, E. Shinbrot, N. Hama, Megan Lehmkuhl, F. Hosoda, Y. Arai, K. Walker, M. Dahdouli, Kengo Gotoh, G. Nagae, M. Gingras, D. Muzny, H. Ojima, K. Shimada, Y. Midorikawa, J. Goss, R. Cotton, Akimasa Hayashi, J. Shibahara, S. Ishikawa, J. Guiteau, Mariko Tanaka, Tomoko Urushidate, Shoko Ohashi, N. Okada, H. Doddapaneni, Min Wang, Yiming Zhu, H. Dinh, T. Okusaka, N. Kokudo, T. Kosuge, T. Takayama, M. Fukayama, R. Gibbs, D. Wheeler, H. Aburatani, T. Shibata (2014)
Trans-ancestry mutational landscape of hepatocellular carcinoma genomesNature Genetics, 46
N. Nishida, M. Kudo (2014)
Alteration of Epigenetic Profile in Human Hepatocellular Carcinoma and Its Clinical ImplicationsLiver Cancer, 3
Yasuyuki Okamoto, Keiko Shinjo, Y. Shimizu, T. Sano, K. Yamao, Wentao Gao, M. Fujii, H. Osada, Y. Sekido, S. Murakami, Yasuhito Tanaka, T. Joh, Shinya Sato, Satoru Takahashi, T. Wakita, Jingde Zhu, J. Issa, Y. Kondo (2014)
Hepatitis virus infection affects DNA methylation in mice with humanized livers.Gastroenterology, 146 2
Yuan Tian, V. Wong, G. Wong, Weiqin Yang, Hanyong Sun, Jiayun Shen, J. Tong, M. Go, Y. Cheung, P. Lai, Mi Zhou, Gang Xu, T. Huang, Jun Yu, K. To, A. Cheng, H. Chan (2015)
Histone Deacetylase HDAC8 Promotes Insulin Resistance and β-Catenin Activation in NAFLD-Associated Hepatocellular Carcinoma.Cancer research, 75 22
Qi Fei, Ke Shang, Jianhua Zhang, S. Chuai, D. Kong, Tianlun Zhou, Shijun Fu, Ying Liang, Chong Li, Zhi Chen, Yuan Zhao, Zhengtian Yu, Zheng-Yu Huang, M. Hu, Haiyan Ying, Zhui Chen, Yun Zhang, F. Xing, Jidong Zhu, Haiyan Xu, Kehao Zhao, Chris Lu, P. Atadja, Z. Xiao, E. Li, J. Shou (2015)
Histone methyltransferase SETDB1 regulates liver cancer cell growth through methylation of p53Nature Communications, 6
J. Ohm, Kelly McGarvey, Xiaobing Yu, Linzhao Cheng, Kornel Schuebel, L. Cope, H. Mohammad, Wei Chen, V. Daniel, Wayne Yu, D. Berman, T. Jenuwein, Kevin Pruitt, S. Sharkis, D. Watkins, J. Herman, S. Baylin (2007)
A stem cell–like chromatin pattern may predispose tumor suppressor genes to DNA hypermethylation and heritable silencingNature Genetics, 39
T. Ichikawa, K. Sano, H. Morisaka, J. Raoul, M. Gilabert, G. Piana, N. Kokudo, M. Peck‐Radosavljevic, Naoki Oishi, T. Yamashita, S. Kaneko, T. Murakami, M. Tsurusaki, N. Akamatsu, Y. Sugawara (2014)
Recent Advances in Bioinformatics Reveal the Molecular Heterogeneity of Hepatocellular CarcinomaLiver Cancer, 3
K. Szymanska, Jian-Guo Chen, Yan Cui, Y. Gong, P. Turner, S. Villar, C. Wild, D. Parkin, P. Hainaut (2009)
TP53 R249S Mutations, Exposure to Aflatoxin, and Occurrence of Hepatocellular Carcinoma in a Cohort of Chronic Hepatitis B Virus Carriers from Qidong, ChinaCancer Epidemiology Biomarkers & Prevention, 18
N. Nishida, M. Kudo (2013)
Recent Advancements in Comprehensive Genetic Analyses for Human Hepatocellular CarcinomaOncology, 84
Bo Wen, Hao Wu, Y. Shinkai, R. Irizarry, A. Feinberg (2008)
Large organized chromatin K9-modifications (LOCKs) distinguish differentiated from embryonic stem cellsNature genetics, 41
S. Parpart, S. Roessler, Fei Dong, V. Rao, A. Takai, Junfang Ji, L. Qin, Q. Ye, H. Jia, Zhao-You Tang, X. Wang (2014)
Modulation of miR‐29 expression by alpha‐fetoprotein is linked to the hepatocellular carcinoma epigenomeHepatology, 60
N. Nishida, T. Nishimura, T. Nagasaka, I. Ikai, A. Goel, C. Boland (2007)
Extensive methylation is associated with beta-catenin mutations in hepatocellular carcinoma: evidence for two distinct pathways of human hepatocarcinogenesis.Cancer research, 67 10
N. Nishida, Hirokazu Chishina, T. Arizumi, M. Takita, S. Kitai, N. Yada, S. Hagiwara, Tatsuo Inoue, Y. Minami, K. Ueshima, T. Sakurai, M. Kudo (2014)
Identification of Epigenetically Inactivated Genes in Human Hepatocellular Carcinoma by Integrative Analyses of Methylation Profiling and Pharmacological UnmaskingDigestive Diseases, 32
C. Raggi, V. Factor, Daekwan Seo, A. Holczbauer, M. Gillen, J. Marquardt, J. Andersen, M. Durkin, S. Thorgeirsson (2014)
Epigenetic reprogramming modulates malignant properties of human liver cancerHepatology, 59
Christine Chaffer, Ines Brueckmann, C. Scheel, A. Kaestli, Paul Wiggins, L. Rodrigues, M. Brooks, Ferenc Reinhardt, Ying Su, K. Polyak, Lisa Arendt, C. Kuperwasser, Brian Bierie, R. Weinberg (2011)
Normal and neoplastic nonstem cells can spontaneously convert to a stem-like stateProceedings of the National Academy of Sciences, 108
Raksha Mudbhary, Y. Hoshida, Yelena Chernyavskaya, Vinitha Jacob, A. Villanueva, A. Villanueva, M. Fiel, Xintong Chen, K. Kojima, S. Thung, R. Bronson, A. Lachenmayer, K. Revill, Clara Alsinet, R. Sachidanandam, Anal Desai, S. Senbanerjee, C. Ukomadu, J. Llovet, K. Sadler (2014)
UHRF1 overexpression drives DNA hypomethylation and hepatocellular carcinoma.Cancer cell, 25 2
S. Horvath, W. Erhart, M. Brosch, O. Ammerpohl, W. Schönfels, M. Ahrens, N. Heits, J. Bell, P. Tsai, T. Spector, P. Deloukas, R. Siebert, B. Sipos, T. Becker, C. Röcken, C. Schafmayer, J. Hampe (2014)
Obesity accelerates epigenetic aging of human liverProceedings of the National Academy of Sciences, 111
Q. Cao, Ram-Shankar Mani, Bushra Ateeq, S. Dhanasekaran, I. Asangani, John Prensner, J. Kim, J. Brenner, Xiaojun Jing, Xuhong Cao, Rui Wang, Yong Li, Arun Dahiya, L. Wang, M. Pandhi, R. Lonigro, Yi-Mi Wu, S. Tomlins, N. Palanisamy, Zhaohui Qin, Jindan Yu, C. Maher, S. Varambally, A. Chinnaiyan (2011)
Coordinated regulation of polycomb group complexes through microRNAs in cancer.Cancer cell, 20 2
J. Uram, Hao Wang, Bjarne Bartlett, H. Kemberling, A. Eyring, A. Skora, N. Azad, D. Laheru, R. Donehower, Brandon Luber, T. Crocenzi, G. Fisher, Steven Duffy, James Lee, M. Koshiji, J. Eshleman, R. Anders, B. Vogelstein, L. Diaz (2015)
PD-1 blockade in tumors with mismatch repair deficiency.Journal of clinical oncology : official journal of the American Society of Clinical Oncology, 33 18_suppl
N. Nishida, M. Kudo, T. Nishimura, T. Arizumi, M. Takita, S. Kitai, N. Yada, S. Hagiwara, Tatsuo Inoue, Y. Minami, K. Ueshima, T. Sakurai, N. Yokomichi, T. Nagasaka, A. Goel (2013)
Unique Association between Global DNA Hypomethylation and Chromosomal Alterations in Human Hepatocellular CarcinomaPLoS ONE, 8
A. Doi, In-Hyun Park, Bo Wen, Peter Murakami, Martin Aryee, R. Irizarry, Brian Herb, C. Ladd-Acosta, Junsung Rho, Sabine Loewer, Justine Miller, T. Schlaeger, G. Daley, A. Feinberg (2009)
Differential methylation of tissue- and cancer-specific CpG island shores distinguishes human induced pluripotent stem cells, embryonic stem cells and fibroblastsNature Genetics, 41
Jing Song, Zhanwen Du, M. Ravasz, Bohan Dong, Zhenghe Wang, R. Ewing (2015)
A Protein Interaction between β-Catenin and Dnmt1 Regulates Wnt Signaling and DNA Methylation in Colorectal Cancer CellsMolecular Cancer Research, 13
Yuan Tian, V. Wong, G. Wong, Weiqin Yang, Hanyong Sun, Jiayun Shen, J. Tong, M. Go, Y. Cheung, P. Lai, Mi Zhou, Gang Xu, T. Huang, Jun Yu, K. To, A. Cheng, H. Chan (2015)
Histone Deacetylase HDAC 8 Promotes Insulin Resistance and b-Catenin Activation in NAFLD-Associated Hepatocellular Carcinoma
(2015)
Mutant p 53 cooperates with the SWI / SNF chromatin remodeling complex to regulate VEGFR 2 in breast cancer cells
A. Holczbauer, V. Factor, J. Andersen, J. Marquardt, D. Kleiner, C. Raggi, Mitsuteru Kitade, Daekwan Seo, H. Akita, M. Durkin, S. Thorgeirsson (2013)
Modeling pathogenesis of primary liver cancer in lineage-specific mouse cell types.Gastroenterology, 145 1
A. Mills (2010)
Throwing the cancer switch: reciprocal roles of polycomb and trithorax proteinsNature Reviews Cancer, 10
H. Isomoto, J. Mott, Shogo Kobayashi, N. Werneburg, S. Bronk, S. Haan, G. Gores (2007)
Sustained IL-6/STAT-3 signaling in cholangiocarcinoma cells due to SOCS-3 epigenetic silencing.Gastroenterology, 132 1
X. Wang, R. Ng, X. Ming, Wu Zhang, Lin Chen, A. Chu, R. Pang, C. Lo, S. Tsao, Xuqing Liu, R. Poon, S. Fan (2013)
Epigenetic Regulation of Pluripotent Genes Mediates Stem Cell Features in Human Hepatocellular Carcinoma and Cancer Cell LinesPLoS ONE, 8
D. Xia, Dingzhi Wang, Sun-Hee Kim, R. Dubois (2011)
Abstract 89: Prostaglandin E2 promotes intestinal tumor growth via DNA methylationCancer Research, 71
N. Pfister, Vitalay Fomin, K. Regunath, Jeffrey Zhou, Wen Zhou, L. Silwal-Pandit, William Freed-Pastor, O. Laptenko, S. Neo, J. Bargonetti, M. Hoque, B. Tian, J. Gunaratne, O. Engebraaten, J. Manley, A. Børresen-Dale, P. Neilsen, C. Prives (2015)
Mutant p53 cooperates with the SWI/SNF chromatin remodeling complex to regulate VEGFR2 in breast cancer cellsGenes & Development, 29
Accumulation of genetic and epigenetic alterations is a hallmark of cancer genomes, including those in hepatocellular carcinoma (HCC). Particularly, in human HCC, epigenetic changes are more frequently observed than genetic changes in a variety of cancer-related genes, suggesting a potential role for epigenetic alterations during hepatocarcinogenesis. Several environmental factors, such as inflammation, obesity, and steatosis, are reported to affect the epigenetic status in hepatocytes, which could play a role in HCC development. In addition, genetic mutations in histone modulators and chromatin regulators would be critical for the acceleration of epigenetic alteration. It is also possible that major genetic mutations of HCC, such as TP53 and CNTTB1 mutations, are associated with the disturbance of epigenetic integrity. For example, specific TP53 mutations frequently induced by aflatoxin B1 exposure might affect histone modifiers and nucleosome remodelers. Generally, epigenetic alteration is reversible, because of which dysregulation of transcription takes place, without affecting protein structure. Therefore, differentiation therapy is one of the potential approaches for HCC with advanced epigenetic alterations. On the other hand, a tumor carrying an accumulation of genetic mutations would result in many abnormal proteins that could be recognized as non-self and could be targets for immune reactions; thus, immune-checkpoint blockers should be effective for HCCs with genetic hypermutation. Although the emergence of genetic and epigenetic alterations could be linked to each other and there could be some crossover or convergence between these cancer pathways, characterization of the mutation spectrum of genetic and epigenetic alterations could influence future HCC treatment.
Digestive Diseases – Karger
Published: Jan 1, 2016
Keywords: Chromatin; Mutation; DNA methylation; Histone; Hepatocellular carcinoma
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.