Access the full text.
Sign up today, get DeepDyve free for 14 days.
A 3D finite element model, based on the combination of a creep model and a ductility exhaustion approach, is presented and validated on the basis of creep crack growth tests. The proposed model is used to characterize creep crack growth in a pressurized cylinder with an axial crack on the inside surface. A canoe shaped distribution of stress triaxiality, that directly affects the creep damage, is found and investigated. The damage evolution is observed at different crack tip locations, showing a dependence on the crack geometry and loading conditions.
Strength, Fracture and Complexity – IOS Press
Published: Jan 1, 2018
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.