Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Changes in protein levels of elongation factors, eEF1A-1 and eEF1A-2/S1, in long-term denervated rat muscle

Changes in protein levels of elongation factors, eEF1A-1 and eEF1A-2/S1, in long-term denervated... Purpose: This study was designed to determine whether the quantitative relationship between the levels of the eEF1A-1(developmental) and eEF1A-2/S1 (adult) isoforms of peptide elongation factor remains stable after denervation of skeletal muscle or whether in response to denervation the relative amount of the developmental form would increase. In normal postnatal rat muscle, eEF1A-2/S1 is the dominant form represented, and levels of eEF1A-1 are extremely low. Methods: One hind limb in young adult rats was permanently denervated. Denervated and corresponding contralateral control muscles were removed for biochemical and morphological analysis from 2 days to 25 months after denervation. Results: By one month after denervation, relative levels of eEF1A-1 rose dramatically in relation to those of eEF1A-2/S1, and they remained high throughout the remainder of the 25-month denervation period. Ultrastructural analysis showed a complex mix of muscle fiber atrophy, dying muscle nuclei and muscle fibers, and newly forming muscle fibers in the same tissue. Conclusions: As during muscle regeneration, levels of the developmental eEF1A-1 isoform of peptide elongation factor greatly increased relative to those of the adult eEF1A-2/S1 adult isoform following denervation in rat muscles. However, in contrast to regeneration, the elevated level of eEF1A-1 did not return to the basal minimal level. Since switching from eEF1A-1 to eEF1A-2/S1 is an indicator that terminal differentiated is completed, the failure of eEF1A-1 to return to basal level may be indicative of the persistence of an unstable tissue environment that includes muscle fiber atrophy, degeneration and neomyogenesis. The specific cellular basis for the increase in eEF1A-1 could not be determined from this study. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Restorative Neurology and Neuroscience IOS Press

Changes in protein levels of elongation factors, eEF1A-1 and eEF1A-2/S1, in long-term denervated rat muscle

Loading next page...
 
/lp/ios-press/changes-in-protein-levels-of-elongation-factors-eef1a-1-and-eef1a-2-s1-FlSmmSPAXN

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

Publisher
IOS Press
Copyright
Copyright © 2003 by IOS Press, Inc
ISSN
0922-6028
eISSN
1878-3627
Publisher site
See Article on Publisher Site

Abstract

Purpose: This study was designed to determine whether the quantitative relationship between the levels of the eEF1A-1(developmental) and eEF1A-2/S1 (adult) isoforms of peptide elongation factor remains stable after denervation of skeletal muscle or whether in response to denervation the relative amount of the developmental form would increase. In normal postnatal rat muscle, eEF1A-2/S1 is the dominant form represented, and levels of eEF1A-1 are extremely low. Methods: One hind limb in young adult rats was permanently denervated. Denervated and corresponding contralateral control muscles were removed for biochemical and morphological analysis from 2 days to 25 months after denervation. Results: By one month after denervation, relative levels of eEF1A-1 rose dramatically in relation to those of eEF1A-2/S1, and they remained high throughout the remainder of the 25-month denervation period. Ultrastructural analysis showed a complex mix of muscle fiber atrophy, dying muscle nuclei and muscle fibers, and newly forming muscle fibers in the same tissue. Conclusions: As during muscle regeneration, levels of the developmental eEF1A-1 isoform of peptide elongation factor greatly increased relative to those of the adult eEF1A-2/S1 adult isoform following denervation in rat muscles. However, in contrast to regeneration, the elevated level of eEF1A-1 did not return to the basal minimal level. Since switching from eEF1A-1 to eEF1A-2/S1 is an indicator that terminal differentiated is completed, the failure of eEF1A-1 to return to basal level may be indicative of the persistence of an unstable tissue environment that includes muscle fiber atrophy, degeneration and neomyogenesis. The specific cellular basis for the increase in eEF1A-1 could not be determined from this study.

Journal

Restorative Neurology and NeuroscienceIOS Press

Published: Jan 1, 2003

There are no references for this article.