“Whoa! It's like Spotify but for academic articles.”

Instant Access to Thousands of Journals for just $40/month

Get 2 Weeks Free

Firing Rate Homeostasis for Dynamic Neural Field Formation

Dynamic neural fields are recurrent neural networks which aim at modeling cortical activity evolution both in space and time. A self-organized formation of these fields has been rarely explored previously. The main reason for this is that learning-induced changes in effective connectivity constitute a severe problem with respect to network stability. In this paper, we present a novel network model which is able to self-organize even in face of experience-driven changes in the synaptic strengths of all connections. Key to the model is the incorporation of homeostatic mechanisms which explicitly address network stability. These mechanisms regulate activity of individual neurons in a similar manner as cortical activity is controlled. Namely, our model implements the homeostatic principles of synaptic scaling and intrinsic plasticity. By using fully plastic within-field connections our model further decouples learning from topological constraints. For this reason, we propose to incorporate an additional process which facilitates the development of topology preserving mappings. This process minimizes the wiring length between neurons. We thoroughly evaluated the model using artificial data as well as continuous speech. Our results demonstrate that the network is able to self-organize, maintains stable activity levels, and remains adaptive to variations in input strength and input distribution. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png IEEE Transactions on Autonomous Mental Development Institute of Electrical and Electronics Engineers

Loading next page...

You're reading a free preview. Subscribe to read the entire article.

And millions more from thousands of peer-reviewed journals, for just $40/month

Get 2 Weeks Free

To be the best researcher, you need access to the best research

  • With DeepDyve, you can stop worrying about how much articles cost, or if it's too much hassle to order — it's all at your fingertips. Your research is important and deserves the top content.
  • Read from thousands of the leading scholarly journals from Springer, Elsevier, Nature, IEEE, Wiley-Blackwell and more.
  • All the latest content is available, no embargo periods.