“Whoa! It’s like Spotify but for academic articles.”

Instant Access to Thousands of Journals for just $40/month

Effect of processing parameters on the properties of peptide-containing PLGA microspheres

The physico-chemical properties of biodegradable polylactide-co-glycolide (PLGA) microspheres containing the peptide salmon calcitonin (sCT) were affected by the processing parameters. The microsphere size increased with an increase in the viscosity of the polymer solution. Concentration of methanol and peptide in the dispersed phase had the most discernible effects with the combination causing external and internal porosity. Increasing sCT in the presence of methanol increased the surface area and porosity. The surface area also increased as the molecular weight of the polymer was decreased. At higher ratios of the dispersed phase volume to the continuous phase volume, the surface area and surface porosity were higher and the particle size was lower. Thus, the physico-chemical properties of the microspheres can be easily altered by varying the processing parameters allowing formation of microspheres with a range of properties. The microspheres may be used to evaluate the relationship between the properties and ultimate in-vivo performance. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Microencapsulation Informa Healthcare

Effect of processing parameters on the properties of peptide-containing PLGA microspheres

Abstract

The physico-chemical properties of biodegradable polylactide-co-glycolide (PLGA) microspheres containing the peptide salmon calcitonin (sCT) were affected by the processing parameters. The microsphere size increased with an increase in the viscosity of the polymer solution. Concentration of methanol and peptide in the dispersed phase had the most discernible effects with the combination causing external and internal porosity. Increasing sCT in the presence of methanol increased the surface area and porosity. The surface area also increased as the molecular weight of the polymer was decreased. At higher ratios of the dispersed phase volume to the continuous phase volume, the surface area and surface porosity were higher and the particle size was lower. Thus, the physico-chemical properties of the microspheres can be easily altered by varying the processing parameters allowing formation of microspheres with a range of properties. The microspheres may be used to evaluate the relationship between the properties and ultimate in-vivo performance.
Loading next page...
1
 
/lp/informa-healthcare/effect-of-processing-parameters-on-the-properties-of-peptide-fmRaO5qjTo

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

How DeepDyve Works

Spend time researching, not time worrying you’re buying articles that might not be useful.

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from Springer, Elsevier, Nature, IEEE, Wiley-Blackwell and more.

All the latest content is available, no embargo periods.

See the journals in your area

Simple and Affordable Pricing

14-day free trial. Cancel anytime, with a 30-day money-back guarantee.

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$40/month

Best Deal — 25% off

Annual Plan

  • All the features of the Professional Plan, but for 25% off!
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$30/month
billed annually