“Whoa! It’s like Spotify but for academic articles.”

Instant Access to Thousands of Journals for just $40/month

A clinical study to assess fall risk using a single waist accelerometer

Falls have various causes and are often associated with mobility impairments. Preventive steps to avoid falls may be initiated, if an increasing fall risk could be detected in time. The objective of this article is to identify an automated sensor-based method to determine fall risk of patients based on objectively measured gait parameters. One hundred fifty-one healthy subjects and 90 subjects at risk of falling were measured during a Timed ‘Up & Go’ test with a single triaxial acceleration sensor worn on a waist belt. The fall risk was assessed using the STRATIFY score. A decision tree induction algorithm was used to distinguish between subjects with high and low risk using the determined gait parameters. The results of the risk classification produce an overall accuracy of 90.4% in relation to STRATIFY score. The sensitivity amount to 89.4%, the specificity to 91.0% and the reliability parameter κ equals 0.79. The method presented is able to distinguish between subjects with high and low fall risk. It is unobtrusive and therefore may be applied over extended time periods. A subsequent study is needed to confirm the model's suitability for data recorded in patients' everyday lives. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Informatics for Health and Social Care Informa Healthcare

A clinical study to assess fall risk using a single waist accelerometer

Abstract

Falls have various causes and are often associated with mobility impairments. Preventive steps to avoid falls may be initiated, if an increasing fall risk could be detected in time. The objective of this article is to identify an automated sensor-based method to determine fall risk of patients based on objectively measured gait parameters. One hundred fifty-one healthy subjects and 90 subjects at risk of falling were measured during a Timed ‘Up & Go’ test with a single triaxial acceleration sensor worn on a waist belt. The fall risk was assessed using the STRATIFY score. A decision tree induction algorithm was used to distinguish between subjects with high and low risk using the determined gait parameters. The results of the risk classification produce an overall accuracy of 90.4% in relation to STRATIFY score. The sensitivity amount to 89.4%, the specificity to 91.0% and the reliability parameter κ equals 0.79. The method presented is able to distinguish between subjects with high and low fall risk. It is unobtrusive and therefore may be applied over extended time periods. A subsequent study is needed to confirm the model's suitability for data recorded in patients' everyday lives.
Loading next page...
 
/lp/informa-healthcare/a-clinical-study-to-assess-fall-risk-using-a-single-waist-B0TZ2IgF3W

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

How DeepDyve Works

Spend time researching, not time worrying you’re buying articles that might not be useful.

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from Springer, Elsevier, Nature, IEEE, Wiley-Blackwell and more.

All the latest content is available, no embargo periods.

See the journals in your area

Simple and Affordable Pricing

14-day free trial. Cancel anytime, with a 30-day money-back guarantee.

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$40/month

Best Deal — 25% off

Annual Plan

  • All the features of the Professional Plan, but for 25% off!
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$30/month
billed annually