Access the full text.
Sign up today, get DeepDyve free for 14 days.
Recommendation systems have been well established to reduce the problem of information overload and have become one of the most valuable tools applicable to different domains like computer science, mathematics, psychology, etc. The initial interest to write this survey is composing a concise research paper on the key motivation behind the various existing recommender systems and their techniques used in various domains. In this paper, prioritisation of recommendation keywords is presented in form of weighted keyword network along with keywords associations according to their usage in reference section literature. Consequently, this paper provides comprehensive details of various public datasets, their corresponding techniques, comparative analysis of existing recommendation approaches based on faced challenges and performance measures are examined. This study will help the researchers and academicians in quickly understanding the existing work and in planning future recommendation studies for designing a unified and coherent recommender system.
International Journal of Web Engineering and Technology – Inderscience Publishers
Published: Jan 1, 2018
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.