Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Investigation of sequential pattern mining techniques for web recommendation

Investigation of sequential pattern mining techniques for web recommendation Increased application of sequence mining in web recommender systems (WRS) requires a better understanding of the performance and a clear identification of the strengths and weaknesses of existing algorithms. Among the commonly used sequence mining methods, the tree-based approach, such as pre-order linked WAP-tree mining algorithm (PLWAP-Mine) and conditional sequence mining algorithm (CS-Mine), has demonstrated high performance in web mining applications. However, its advantages over other mining methods are not well explained and understood in the context of WRS. This paper firstly reviews the existing sequence mining algorithms, and then studies the performance of two outstanding algorithms, i.e., the PLWAP-Mine and CS-Mine algorithms, with respect to their sensitivity to the dataset variability, and their practicality for web recommendation. The results show that CS-Mine performs faster than PLWAP-Mine, but the frequent patterns generated by PLWAP-Mine are more effective than CS-Mine when applied in web recommendations. These results are useful to WRS developers for the selection of appropriate sequence mining algorithms. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal of Information and Decision Sciences Inderscience Publishers

Investigation of sequential pattern mining techniques for web recommendation

Loading next page...
 
/lp/inderscience-publishers/investigation-of-sequential-pattern-mining-techniques-for-web-Q8ctWBXlWl
Publisher
Inderscience Publishers
Copyright
Copyright © Inderscience Enterprises Ltd. All rights reserved
ISSN
1756-7017
eISSN
1756-7025
DOI
10.1504/IJIDS.2012.050378
Publisher site
See Article on Publisher Site

Abstract

Increased application of sequence mining in web recommender systems (WRS) requires a better understanding of the performance and a clear identification of the strengths and weaknesses of existing algorithms. Among the commonly used sequence mining methods, the tree-based approach, such as pre-order linked WAP-tree mining algorithm (PLWAP-Mine) and conditional sequence mining algorithm (CS-Mine), has demonstrated high performance in web mining applications. However, its advantages over other mining methods are not well explained and understood in the context of WRS. This paper firstly reviews the existing sequence mining algorithms, and then studies the performance of two outstanding algorithms, i.e., the PLWAP-Mine and CS-Mine algorithms, with respect to their sensitivity to the dataset variability, and their practicality for web recommendation. The results show that CS-Mine performs faster than PLWAP-Mine, but the frequent patterns generated by PLWAP-Mine are more effective than CS-Mine when applied in web recommendations. These results are useful to WRS developers for the selection of appropriate sequence mining algorithms.

Journal

International Journal of Information and Decision SciencesInderscience Publishers

Published: Jan 1, 2012

There are no references for this article.