Access the full text.
Sign up today, get DeepDyve free for 14 days.
The paper proposes a face recognition system using Zernike moments (ZM) and feed forward neural network as a classifier. Magnitudes of the ZM, which are invariant to rotation, are used as feature vectors for efficient representation of the images. The experiment was conducted on the ORL and Texas 3D Face Recognition Database which has both colour and range images. The recognition performance with measures like overall recognition accuracy, false acceptance rate, false rejection rate and true rejection rate was evaluated with multilayer perceptron neural network, radial basis function neural network and probabilistic neural network for variable lengths of the feature vector using confusion matrix. The simulation results indicates that the invariant ZM with neural network classifier was successful in recognising the images constrained to different variations and illumination conditions. The overall classification accuracy of 99.7% with MLPNN and 99.6% with MLPNN was achieved with range images and grey images from Texas 3D Face Recognition Database, respectively. Furthermore, 99.5% accuracy with RBFNN was achieved from ORL database. Keywords: Zernike moments; multilayer perceptron neural network; MLPNN; radial basis function neural network; RBFNN; probabilistic neural network; PNN; face recognition; confusion matrix; accuracy; false acceptance rate; FAR; false rejection rate; FRR; true
International Journal of Biometrics – Inderscience Publishers
Published: Jan 1, 2015
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.