A hybrid ARIMA-EGARCH and Artificial Neural Network model in stock market forecasting: evidence for India and the USA

A hybrid ARIMA-EGARCH and Artificial Neural Network model in stock market forecasting: evidence... This study develops a hybrid model that combines Autoregressive Integrated Moving Average (ARIMA), Exponential GARCH (EGARCH) and Artificial Neural Network (ANN) to predict the daily returns of S&P CNX Nifty and S&P 500 indices by modifying Zhang’s (2003) approach. The performance of the hybrid ARIMA-EGARCH-ANN model is benchmarked against the ARIMA-EGARCH and ANN models. The empirical evidence provides superiority of the hybrid ARIMA-EGARCH-ANN model in terms of the traditional forecasting accuracy measures and Sign and directional change and delivers consistent results for the two time series. This endorses hybrid model robustness and provides its practical use in formulating a strategy for trading in the S&P 500 and Nifty indices. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal of Business and Emerging Markets Inderscience Publishers

A hybrid ARIMA-EGARCH and Artificial Neural Network model in stock market forecasting: evidence for India and the USA

Loading next page...
 
/lp/inderscience-publishers/a-hybrid-arima-egarch-and-artificial-neural-network-model-in-stock-9lTAav8lJE
Publisher
Inderscience Publishers
Copyright
Copyright © Inderscience Enterprises Ltd. All rights reserved
ISSN
1753-6219
eISSN
1753-6227
D.O.I.
10.1504/IJBEM.2012.046241
Publisher site
See Article on Publisher Site

Abstract

This study develops a hybrid model that combines Autoregressive Integrated Moving Average (ARIMA), Exponential GARCH (EGARCH) and Artificial Neural Network (ANN) to predict the daily returns of S&P CNX Nifty and S&P 500 indices by modifying Zhang’s (2003) approach. The performance of the hybrid ARIMA-EGARCH-ANN model is benchmarked against the ARIMA-EGARCH and ANN models. The empirical evidence provides superiority of the hybrid ARIMA-EGARCH-ANN model in terms of the traditional forecasting accuracy measures and Sign and directional change and delivers consistent results for the two time series. This endorses hybrid model robustness and provides its practical use in formulating a strategy for trading in the S&P 500 and Nifty indices.

Journal

International Journal of Business and Emerging MarketsInderscience Publishers

Published: Jan 1, 2012

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off