MITOCHONDRIAL DNA EVOLUTION IN MICE

MITOCHONDRIAL DNA EVOLUTION IN MICE MITOCHONDRIAL DNA EVOLUTION IN MICE Stephen D. Ferris 1 , Richard D. Sage 2 , Ellen M. Prager 1 , Uzi Ritte 1 , and Allan C. Wilson 1 1 Department of Biochemistry, University of California, Berkeley, California 94720 2 Department of Biochemistry and Museum of Vertebrate Zoology, University of California, Berkeley, California 94720 This study extends knowledge of mitochondrial DNA (mtDNA) diversity in mice to include 208 animals belonging to eight species in the subgenus Mus. Highly purified mtDNA from each has been subjected to high-resolution restriction mapping with respect to the known sequence of one mouse mtDNA. Variation attributed to base substitutions was encountered at about 200 of the 300 cleavage sites examined, and a length mutation was located in or near the displacement loop. The variability of different functional regions in this genome was as follows, from least to most: ribosomal RNA, transfer RNA, known proteins, displacement loop and unidentified reading frames.—Phylogenetic analysis confirmed the utility of the Sage and Marshall revision of mouse classification, according to which there are at least four species of commensal mice and three species of aboriginal mice in the complex that was formerly considered to be one species. The most thoroughly studied of these species is Mus domesticus , the house mouse of Western Europe and the Mediterranean region, which is the mitochondrial source of all 50 of the laboratory strains examined and of the representatives of wild house mice introduced by Europeans to North and South America during the past few hundred years.—The level of mtDNA variation among wild representatives of ( M. musculus ) and several other mammalian species. By contrast, among the many laboratory strains that are known or suspected to stem from the pet mouse trade, there is little interstrain variation, most strains having the "old inbred" type of domesticus mtDNA, whose frequency in the 145 wild mice examined is low, about 0.04. Also notable is the apparent homogeneity of mtDNA in domesticus races that have fixed six or more fused chromosomes and the close relationship of some of these mtDNAs to those of karyotypically normal mice.—In addition, this paper discusses fossil and other evidence for the view that in mice, as in many other mammals, the average rate of point mutational divergence in mtDNA is 2–4% per million years. From this, it is estimated that the commensal association between mice and our ancestors began more than a million years ago, i.e. , at an early stage in the evolution of Homo erectus . Submitted on August 4, 1981 Accepted on July 21, 1983 http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Genetics Genetics Society of America

MITOCHONDRIAL DNA EVOLUTION IN MICE

Loading next page...
 
/lp/genetics-society-of-america/mitochondrial-dna-evolution-in-mice-3q60JWsTyO
Publisher
Genetics Society of America
Copyright
Copyright © 1983 by the Genetics Society of America
ISSN
0016-6731
eISSN
1943-2631
Publisher site
See Article on Publisher Site

Abstract

MITOCHONDRIAL DNA EVOLUTION IN MICE Stephen D. Ferris 1 , Richard D. Sage 2 , Ellen M. Prager 1 , Uzi Ritte 1 , and Allan C. Wilson 1 1 Department of Biochemistry, University of California, Berkeley, California 94720 2 Department of Biochemistry and Museum of Vertebrate Zoology, University of California, Berkeley, California 94720 This study extends knowledge of mitochondrial DNA (mtDNA) diversity in mice to include 208 animals belonging to eight species in the subgenus Mus. Highly purified mtDNA from each has been subjected to high-resolution restriction mapping with respect to the known sequence of one mouse mtDNA. Variation attributed to base substitutions was encountered at about 200 of the 300 cleavage sites examined, and a length mutation was located in or near the displacement loop. The variability of different functional regions in this genome was as follows, from least to most: ribosomal RNA, transfer RNA, known proteins, displacement loop and unidentified reading frames.—Phylogenetic analysis confirmed the utility of the Sage and Marshall revision of mouse classification, according to which there are at least four species of commensal mice and three species of aboriginal mice in the complex that was formerly considered to be one species. The most thoroughly studied of these species is Mus domesticus , the house mouse of Western Europe and the Mediterranean region, which is the mitochondrial source of all 50 of the laboratory strains examined and of the representatives of wild house mice introduced by Europeans to North and South America during the past few hundred years.—The level of mtDNA variation among wild representatives of ( M. musculus ) and several other mammalian species. By contrast, among the many laboratory strains that are known or suspected to stem from the pet mouse trade, there is little interstrain variation, most strains having the "old inbred" type of domesticus mtDNA, whose frequency in the 145 wild mice examined is low, about 0.04. Also notable is the apparent homogeneity of mtDNA in domesticus races that have fixed six or more fused chromosomes and the close relationship of some of these mtDNAs to those of karyotypically normal mice.—In addition, this paper discusses fossil and other evidence for the view that in mice, as in many other mammals, the average rate of point mutational divergence in mtDNA is 2–4% per million years. From this, it is estimated that the commensal association between mice and our ancestors began more than a million years ago, i.e. , at an early stage in the evolution of Homo erectus . Submitted on August 4, 1981 Accepted on July 21, 1983

Journal

GeneticsGenetics Society of America

Published: Nov 1, 1983

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off