Seismic resistance prediction of corroded S400 (BSt420) reinforcing bars

Seismic resistance prediction of corroded S400 (BSt420) reinforcing bars PurposeStructures in seismic areas, during their service lifetime, are subjected to numerous seismic loads that certainly affect their structural integrity. The degradation of these structures, to a great extent, depends on the scale of seismic events, the steel mechanical performance on reversal loads and its resistance to corrosion phenomena. The paper aims to discuss these issues.Design/methodology/approachBased on the experimental results of seismic steel behavior S400 (BSt III), which was widely used in the past years, a prediction study of seismic steel behavior was conducted in the current study. This prediction on behavior of both reference and corroded steel was succeeded through a simulation of experimental low cycle fatigue conditions (LCF – strain controlled).FindingsAt the same time, the present study analyses fatigue factors (ef, a, fSR, ed, ep, R, b) that define their inelastic relation between tension – strain and a prediction model on behavior of both reference and corroded steel rebar, in seismic loads conditions (LCF), is proposed.Originality/valueMoreover, this study dealt with the synergy of corrosion factor and the existence of superficial ribs (ribbed and smoothed) in seismic behavior of steel bar S400 (BSt420). The S-N curves that are exported can be resulted in a first attempt of prediction of anti-seismic behavior on reinforced concrete structures with this the same steel class. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal of Structural Integrity Emerald Publishing

Seismic resistance prediction of corroded S400 (BSt420) reinforcing bars

Loading next page...
 
/lp/emerald/seismic-resistance-prediction-of-corroded-s400-bst420-reinforcing-bars-xyzPBRJFcQ
Publisher
Emerald Publishing
Copyright
Copyright © Emerald Group Publishing Limited
ISSN
1757-9864
D.O.I.
10.1108/IJSI-02-2017-0008
Publisher site
See Article on Publisher Site

Abstract

PurposeStructures in seismic areas, during their service lifetime, are subjected to numerous seismic loads that certainly affect their structural integrity. The degradation of these structures, to a great extent, depends on the scale of seismic events, the steel mechanical performance on reversal loads and its resistance to corrosion phenomena. The paper aims to discuss these issues.Design/methodology/approachBased on the experimental results of seismic steel behavior S400 (BSt III), which was widely used in the past years, a prediction study of seismic steel behavior was conducted in the current study. This prediction on behavior of both reference and corroded steel was succeeded through a simulation of experimental low cycle fatigue conditions (LCF – strain controlled).FindingsAt the same time, the present study analyses fatigue factors (ef, a, fSR, ed, ep, R, b) that define their inelastic relation between tension – strain and a prediction model on behavior of both reference and corroded steel rebar, in seismic loads conditions (LCF), is proposed.Originality/valueMoreover, this study dealt with the synergy of corrosion factor and the existence of superficial ribs (ribbed and smoothed) in seismic behavior of steel bar S400 (BSt420). The S-N curves that are exported can be resulted in a first attempt of prediction of anti-seismic behavior on reinforced concrete structures with this the same steel class.

Journal

International Journal of Structural IntegrityEmerald Publishing

Published: Feb 5, 2018

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off