Schlieren and Mie scattering techniques for the ECN “spray G” characterization and 3D CFD model validation

Schlieren and Mie scattering techniques for the ECN “spray G” characterization and 3D CFD... PurposeThis paper aims to study the heat transfer phenomenon occurring between heated walls and impinging fuel, showing the strict relationship between cooling effect after impingement and enhancing of wallfilm formation. The study focuses on a fundamental task in terms of pollutant emissions in internal combustion engines, aiming at giving a major contribution to the optimization of energy conversion systems in terms of environmental impact.Design/methodology/approachThe paper is based on experimental campaigns relevant at taking measurements of an impinging spray over a heated wall in a confined vessel. The results, in both qualitative and quantitative terms (measurements of liquid and vapour radial penetration and thickness), are numerically reproduced by a computational model based on a Reynolds Averaged Navier Stokes approach, properly validated through customized sub-models.FindingsThe paper provides quantitative results about the agreement between radial penetration and vapour thickness between measurements and simulation, achieved by taking into account the cooling effect determined by the fuel impingement. This validation of the numerical model allows the author to give more considerations about the link between wall temperature and wallfilm formation.Originality/valueThis paper presents an original approach for the simulation of wall heat transfer, by imposing a boundary condition at the wall that may consider the heat conduction and temperature cooling given by fuel impingement in both lateral and normal directions. The classical Dirichlet boundary condition, characterized by imposing a fixed temperature value, is, instead, replaced by an approach based on calculating the unsteady process that couples the heat fluxes between the fluid and the solid material and within the solid itself. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal of Numerical Methods for Heat & Fluid Flow Emerald Publishing

Schlieren and Mie scattering techniques for the ECN “spray G” characterization and 3D CFD model validation

Loading next page...
 
/lp/emerald/schlieren-and-mie-scattering-techniques-for-the-ecn-spray-g-T5WQrxt0uT
Publisher
Emerald Group Publishing Limited
Copyright
Copyright © Emerald Group Publishing Limited
ISSN
0961-5539
D.O.I.
10.1108/HFF-03-2017-0120
Publisher site
See Article on Publisher Site

Abstract

PurposeThis paper aims to study the heat transfer phenomenon occurring between heated walls and impinging fuel, showing the strict relationship between cooling effect after impingement and enhancing of wallfilm formation. The study focuses on a fundamental task in terms of pollutant emissions in internal combustion engines, aiming at giving a major contribution to the optimization of energy conversion systems in terms of environmental impact.Design/methodology/approachThe paper is based on experimental campaigns relevant at taking measurements of an impinging spray over a heated wall in a confined vessel. The results, in both qualitative and quantitative terms (measurements of liquid and vapour radial penetration and thickness), are numerically reproduced by a computational model based on a Reynolds Averaged Navier Stokes approach, properly validated through customized sub-models.FindingsThe paper provides quantitative results about the agreement between radial penetration and vapour thickness between measurements and simulation, achieved by taking into account the cooling effect determined by the fuel impingement. This validation of the numerical model allows the author to give more considerations about the link between wall temperature and wallfilm formation.Originality/valueThis paper presents an original approach for the simulation of wall heat transfer, by imposing a boundary condition at the wall that may consider the heat conduction and temperature cooling given by fuel impingement in both lateral and normal directions. The classical Dirichlet boundary condition, characterized by imposing a fixed temperature value, is, instead, replaced by an approach based on calculating the unsteady process that couples the heat fluxes between the fluid and the solid material and within the solid itself.

Journal

International Journal of Numerical Methods for Heat & Fluid FlowEmerald Publishing

Published: Feb 5, 2018

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off