Rheological characterization of non-Brownian suspensions based on structure kinetics

Rheological characterization of non-Brownian suspensions based on structure kinetics PurposeThe purpose of the paper is to develop a methodology to characterize the rheological behaviour of macroscopic non-Brownian suspensions, like solder paste, based on microstructural evolution.Design/methodology/approachA structure-based kinetics model, whose parameters are derived analytically based on assumptions valid for any macroscopic suspension, is developed to describe the rheological behaviour of a given fluid. The values of the parameters are then determined based on experiments conducted at a constant shear rate. The parameter values, obtained from the model, are then adjusted using an optimization algorithm using the mean deviation from experiments as the cost function to replicate the measured rheology. A commercially available solder paste is used as the test fluid for the proposed method.FindingsThe initial parameter values obtained through the analytical model indicates a structural breakdown that is much slower than observations. But optimizing the parameter values, especially the ones associated with the structural breakdown, replicates the thixotropic behaviour of the solder paste reasonably well, but it fails to capture the structure build-up during the three interval thixotropy test.Research limitations/implicationsThe structural kinetics model tends to under-predict the structure build-up rate.Practical implicationsThis study details a more realistic prediction of the rheological behaviour of macroscopic suspensions like solder paste, thermal interface materials and other functional materials. The proposed model can be used to characterize different solder pastes and other functional fluids based on the structure build-up and breakdown rates. The model can also be used as the viscosity definitions in numerical simulations instead of simpler models like Carreau–Yasuda and cross-viscosity models.Originality/valueThe rheological description of the solder paste is critical in determining its validity for a given application. The methodology described in the paper provides a better description of thixotropy without relying on the existing rheological measurements or the behaviour predicted by a standard power-law model. The proposed model can also provide transient viscosity predictions when shear rates vary in time. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Soldering & Surface Mount Technology Emerald Publishing

Rheological characterization of non-Brownian suspensions based on structure kinetics

Loading next page...
 
/lp/emerald/rheological-characterization-of-non-brownian-suspensions-based-on-OFRR6HUhI7
Publisher
Emerald Publishing
Copyright
Copyright © Emerald Group Publishing Limited
ISSN
0954-0911
D.O.I.
10.1108/SSMT-08-2017-0021
Publisher site
See Article on Publisher Site

Abstract

PurposeThe purpose of the paper is to develop a methodology to characterize the rheological behaviour of macroscopic non-Brownian suspensions, like solder paste, based on microstructural evolution.Design/methodology/approachA structure-based kinetics model, whose parameters are derived analytically based on assumptions valid for any macroscopic suspension, is developed to describe the rheological behaviour of a given fluid. The values of the parameters are then determined based on experiments conducted at a constant shear rate. The parameter values, obtained from the model, are then adjusted using an optimization algorithm using the mean deviation from experiments as the cost function to replicate the measured rheology. A commercially available solder paste is used as the test fluid for the proposed method.FindingsThe initial parameter values obtained through the analytical model indicates a structural breakdown that is much slower than observations. But optimizing the parameter values, especially the ones associated with the structural breakdown, replicates the thixotropic behaviour of the solder paste reasonably well, but it fails to capture the structure build-up during the three interval thixotropy test.Research limitations/implicationsThe structural kinetics model tends to under-predict the structure build-up rate.Practical implicationsThis study details a more realistic prediction of the rheological behaviour of macroscopic suspensions like solder paste, thermal interface materials and other functional materials. The proposed model can be used to characterize different solder pastes and other functional fluids based on the structure build-up and breakdown rates. The model can also be used as the viscosity definitions in numerical simulations instead of simpler models like Carreau–Yasuda and cross-viscosity models.Originality/valueThe rheological description of the solder paste is critical in determining its validity for a given application. The methodology described in the paper provides a better description of thixotropy without relying on the existing rheological measurements or the behaviour predicted by a standard power-law model. The proposed model can also provide transient viscosity predictions when shear rates vary in time.

Journal

Soldering & Surface Mount TechnologyEmerald Publishing

Published: Feb 5, 2018

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off