Recommender system based on social influence and the virtual house bandwagon effect in virtual worlds

Recommender system based on social influence and the virtual house bandwagon effect in virtual... PurposeDue to the rapidly increasing volume of users and products in virtual worlds, recommender systems are an important feature in virtual worlds; they can help solve information overload problems. Virtual world users are able to perform several actions that promote the enjoyment of their virtual life, including interacting with others, visiting virtual houses and shopping for virtual products. This study aims to concentrate on the following two important factors: the social neighbors’ influences and the virtual house bandwagon phenomenon, which affects users’ preferences during their virtual house visits and purchasing processes.Design/methodology/approachThe authors determine social influence by considering the interactions between the target user and social circle neighbors. The degree of influence of the virtual house bandwagon effect is derived by analyzing the preferences of the virtual house hosts who have been visited by target users during their successive visits. A novel hybrid recommendation method is proposed herein to predict users’ preferences by combining the analyses of both factors.FindingsThe recommendation performance of the proposed method is evaluated by conducting experiments with a data set collected from a virtual world platform. The experimental results show that the proposed method outperforms the conventional recommendation methods, and they also exhibit the effectiveness of considering both the social influence and the virtual house bandwagon effect for making effective recommendations.Originality/valueExisting studies on recommendation methods did not investigate the virtual house bandwagon effects that are unique to the virtual worlds. The novel idea of the virtual house bandwagon effect is proposed and analyzed for predicting users’ preferences. Moreover, a novel hybrid recommendation approach is proposed herein for generating virtual product recommendations. The proposed approach is able to improve the accuracy of preference predictions and enhance the innovative value of recommender systems for virtual worlds. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Kybernetes Emerald Publishing

Recommender system based on social influence and the virtual house bandwagon effect in virtual worlds

Loading next page...
 
/lp/emerald/recommender-system-based-on-social-influence-and-the-virtual-house-WHvCzSbWRV
Publisher
Emerald Group Publishing Limited
Copyright
Copyright © Emerald Group Publishing Limited
ISSN
0368-492X
D.O.I.
10.1108/K-08-2017-0319
Publisher site
See Article on Publisher Site

Abstract

PurposeDue to the rapidly increasing volume of users and products in virtual worlds, recommender systems are an important feature in virtual worlds; they can help solve information overload problems. Virtual world users are able to perform several actions that promote the enjoyment of their virtual life, including interacting with others, visiting virtual houses and shopping for virtual products. This study aims to concentrate on the following two important factors: the social neighbors’ influences and the virtual house bandwagon phenomenon, which affects users’ preferences during their virtual house visits and purchasing processes.Design/methodology/approachThe authors determine social influence by considering the interactions between the target user and social circle neighbors. The degree of influence of the virtual house bandwagon effect is derived by analyzing the preferences of the virtual house hosts who have been visited by target users during their successive visits. A novel hybrid recommendation method is proposed herein to predict users’ preferences by combining the analyses of both factors.FindingsThe recommendation performance of the proposed method is evaluated by conducting experiments with a data set collected from a virtual world platform. The experimental results show that the proposed method outperforms the conventional recommendation methods, and they also exhibit the effectiveness of considering both the social influence and the virtual house bandwagon effect for making effective recommendations.Originality/valueExisting studies on recommendation methods did not investigate the virtual house bandwagon effects that are unique to the virtual worlds. The novel idea of the virtual house bandwagon effect is proposed and analyzed for predicting users’ preferences. Moreover, a novel hybrid recommendation approach is proposed herein for generating virtual product recommendations. The proposed approach is able to improve the accuracy of preference predictions and enhance the innovative value of recommender systems for virtual worlds.

Journal

KybernetesEmerald Publishing

Published: Mar 5, 2018

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off