Morphology transformation on Cu3Sn grains during the formation of full Cu3Sn solder joints in electronic packaging

Morphology transformation on Cu3Sn grains during the formation of full Cu3Sn solder joints in... PurposeThis paper aims to analyze the morphology transformation on the Cu3Sn grains during the formation of full Cu3Sn solder joints in electronic packaging.Design/methodology/approachBecause of the infeasibility of analyzing the morphology transformation intuitively, a novel equivalent method is used. The morphology transformation on the Cu3Sn grains, during the formation of full Cu3Sn solder joints, is regarded as equivalent to the morphology transformation on the Cu3Sn grains derived from the Cu/Sn structures with different Sn thickness.FindingsDuring soldering, the Cu3Sn grains first grew in the fine equiaxial shape in a ripening process until the critical size. Under the critical size, the Cu3Sn grains were changed from the equiaxial shape to the columnar shape. Moreover, the columnar Cu3Sn grains could be divided into different clusters with different growth directions. With the proceeding of soldering, the columnar Cu3Sn grains continued to grow in a feather of the width growing at a greater extent than the length. With the growth of the columnar Cu3Sn grains, adjacent Cu3Sn grains, within each cluster, merged with each other. Next, the merged columnar Cu3Sn grains, within each cluster, continued to merge with each other. Finally, the columnar Cu3Sn grains, within each cluster, merged into one coarse columnar Cu3Sn grain with the formation of full Cu3Sn solder joints. The detailed mechanism, for the very interesting morphology transformation, has been proposed.Originality/valueFew researchers focused on the morphology transformation of interfacial phases during the formation of full intermetallic compounds joints. To bridge the research gap, the morphology transformation on the Cu3Sn grains during the formation of full Cu3Sn solder joints has been studied for the first time. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Soldering & Surface Mount Technology Emerald Publishing

Morphology transformation on Cu3Sn grains during the formation of full Cu3Sn solder joints in electronic packaging

Loading next page...
 
/lp/emerald/morphology-transformation-on-cu3sn-grains-during-the-formation-of-full-BmeJ3BEq8t
Publisher
Emerald Group Publishing Limited
Copyright
Copyright © Emerald Group Publishing Limited
ISSN
0954-0911
D.O.I.
10.1108/SSMT-10-2017-0038
Publisher site
See Article on Publisher Site

Abstract

PurposeThis paper aims to analyze the morphology transformation on the Cu3Sn grains during the formation of full Cu3Sn solder joints in electronic packaging.Design/methodology/approachBecause of the infeasibility of analyzing the morphology transformation intuitively, a novel equivalent method is used. The morphology transformation on the Cu3Sn grains, during the formation of full Cu3Sn solder joints, is regarded as equivalent to the morphology transformation on the Cu3Sn grains derived from the Cu/Sn structures with different Sn thickness.FindingsDuring soldering, the Cu3Sn grains first grew in the fine equiaxial shape in a ripening process until the critical size. Under the critical size, the Cu3Sn grains were changed from the equiaxial shape to the columnar shape. Moreover, the columnar Cu3Sn grains could be divided into different clusters with different growth directions. With the proceeding of soldering, the columnar Cu3Sn grains continued to grow in a feather of the width growing at a greater extent than the length. With the growth of the columnar Cu3Sn grains, adjacent Cu3Sn grains, within each cluster, merged with each other. Next, the merged columnar Cu3Sn grains, within each cluster, continued to merge with each other. Finally, the columnar Cu3Sn grains, within each cluster, merged into one coarse columnar Cu3Sn grain with the formation of full Cu3Sn solder joints. The detailed mechanism, for the very interesting morphology transformation, has been proposed.Originality/valueFew researchers focused on the morphology transformation of interfacial phases during the formation of full intermetallic compounds joints. To bridge the research gap, the morphology transformation on the Cu3Sn grains during the formation of full Cu3Sn solder joints has been studied for the first time.

Journal

Soldering & Surface Mount TechnologyEmerald Publishing

Published: Feb 5, 2018

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial